Update app.py
Browse files
app.py
CHANGED
@@ -26,6 +26,7 @@ def apply_kmeans(data, k):
|
|
26 |
return centroids, labels
|
27 |
|
28 |
def generate_data():
|
|
|
29 |
traffic_data = [np.random.normal(center, 10, (num_samples, 2)) for center in traffic_centers]
|
30 |
nature_data = [np.random.normal(center, 10, (num_samples, 2)) for center in nature_centers]
|
31 |
population_data = [np.random.normal(center, 10, (num_samples, 2)) for center in population_centers]
|
@@ -33,17 +34,12 @@ def generate_data():
|
|
33 |
traffic_df = pd.DataFrame(np.vstack(traffic_data), columns=["x", "y"])
|
34 |
nature_df = pd.DataFrame(np.vstack(nature_data), columns=["x", "y"])
|
35 |
population_df = pd.DataFrame(np.vstack(population_data), columns=["x", "y"])
|
36 |
-
|
37 |
-
return traffic_df, nature_df, population_df
|
38 |
-
|
39 |
-
traffic_df, nature_df, population_df = generate_data()
|
40 |
|
41 |
def main():
|
42 |
st.title("K-means Clustering Simulator")
|
43 |
|
44 |
if st.button("Initialize Datasets"):
|
45 |
-
|
46 |
-
|
47 |
datasets = st.multiselect("Choose datasets:", ["교통접근성", "자연환경", "인구밀집도"])
|
48 |
k_value = st.slider("Select k value:", 1, 10)
|
49 |
|
|
|
26 |
return centroids, labels
|
27 |
|
28 |
def generate_data():
|
29 |
+
global traffic_df, nature_df, population_df
|
30 |
traffic_data = [np.random.normal(center, 10, (num_samples, 2)) for center in traffic_centers]
|
31 |
nature_data = [np.random.normal(center, 10, (num_samples, 2)) for center in nature_centers]
|
32 |
population_data = [np.random.normal(center, 10, (num_samples, 2)) for center in population_centers]
|
|
|
34 |
traffic_df = pd.DataFrame(np.vstack(traffic_data), columns=["x", "y"])
|
35 |
nature_df = pd.DataFrame(np.vstack(nature_data), columns=["x", "y"])
|
36 |
population_df = pd.DataFrame(np.vstack(population_data), columns=["x", "y"])
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def main():
|
39 |
st.title("K-means Clustering Simulator")
|
40 |
|
41 |
if st.button("Initialize Datasets"):
|
42 |
+
generate_data()
|
|
|
43 |
datasets = st.multiselect("Choose datasets:", ["교통접근성", "자연환경", "인구밀집도"])
|
44 |
k_value = st.slider("Select k value:", 1, 10)
|
45 |
|