Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.cluster import KMeans
|
6 |
+
|
7 |
+
# Generate the datasets
|
8 |
+
np.random.seed(42)
|
9 |
+
num_samples = 100
|
10 |
+
traffic_centers = [(20, 20), (80, 20)]
|
11 |
+
nature_centers = [(20, 80), (80, 80)]
|
12 |
+
population_centers = [(50, 50), (30, 30), (70, 70)]
|
13 |
+
|
14 |
+
traffic_data = [np.random.normal(center, 10, (num_samples, 2)) for center in traffic_centers]
|
15 |
+
nature_data = [np.random.normal(center, 10, (num_samples, 2)) for center in nature_centers]
|
16 |
+
population_data = [np.random.normal(center, 10, (num_samples, 2)) for center in population_centers]
|
17 |
+
|
18 |
+
traffic_df = pd.DataFrame(np.vstack(traffic_data), columns=["x", "y"])
|
19 |
+
nature_df = pd.DataFrame(np.vstack(nature_data), columns=["x", "y"])
|
20 |
+
population_df = pd.DataFrame(np.vstack(population_data), columns=["x", "y"])
|
21 |
+
|
22 |
+
def apply_kmeans(data, k):
|
23 |
+
kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
|
24 |
+
centroids = kmeans.cluster_centers_
|
25 |
+
labels = kmeans.labels_
|
26 |
+
return centroids, labels
|
27 |
+
|
28 |
+
def main():
|
29 |
+
st.title("K-means Clustering Simulator")
|
30 |
+
|
31 |
+
dataset = st.selectbox("Choose a dataset:", ["", "교통접근성", "자연환경", "인구밀집도"])
|
32 |
+
k_value = st.slider("Select k value:", 1, 10)
|
33 |
+
|
34 |
+
data = None
|
35 |
+
if dataset == "교통접근성":
|
36 |
+
data = traffic_df
|
37 |
+
elif dataset == "자연환경":
|
38 |
+
data = nature_df
|
39 |
+
elif dataset == "인구밀집도":
|
40 |
+
data = population_df
|
41 |
+
|
42 |
+
if data is not None:
|
43 |
+
centroids, labels = apply_kmeans(data.values, k_value)
|
44 |
+
|
45 |
+
plt.figure(figsize=(8, 8))
|
46 |
+
plt.scatter(data['x'], data['y'], c=labels, cmap='viridis')
|
47 |
+
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
|
48 |
+
plt.xlim(0, 100)
|
49 |
+
plt.ylim(0, 100)
|
50 |
+
plt.title(f"K-means clustering result for {dataset} Dataset (k={k_value})")
|
51 |
+
st.pyplot()
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
main()
|