import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager as fm from sklearn.cluster import KMeans import matplotlib.font_manager as fm font_path = '/home/user/app/NanumGothic-Regular.ttf' fontprop = fm.FontProperties(fname=font_path, size=12) # Data Generation np.random.seed(42) num_samples = 30 traffic_centers = [(20, 20), (80, 80)] nature_centers = [(0, 80), (80, 0)] population_centers = [(0, 0), (50, 50), (100, 100)] traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2)) nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2)) population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2)) traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"]) nature_df = pd.DataFrame(nature_data, columns=["x", "y"]) population_df = pd.DataFrame(population_data, columns=["x", "y"]) def apply_kmeans(data, k): kmeans = KMeans(n_clusters=k, random_state=42).fit(data) centroids = kmeans.cluster_centers_ labels = kmeans.labels_ return centroids, labels def main(): st.title("K-means 클러스터링 시뮬레이터") # Global variables declaration global traffic_df, nature_df, population_df if st.button("데이터셋 초기화"): traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2)) nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2)) population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2)) traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"]) nature_df = pd.DataFrame(nature_data, columns=["x", "y"]) population_df = pd.DataFrame(population_data, columns=["x", "y"]) datasets = st.multiselect("데이터셋 선택:", ["교통접근성", "자연환경", "인구밀집도"]) k_value = st.slider("k 값 선택:", 1, 10) dataset_mapping = { "교통접근성": (traffic_df, 'o'), "자연환경": (nature_df, 'x'), "인구밀집도": (population_df, '^') } if datasets: combined_data = pd.concat([dataset_mapping[dataset_name][0] for dataset_name in datasets]) centroids, labels = apply_kmeans(combined_data.values, k_value) fig, ax = plt.subplots(figsize=(8, 8)) for dataset_name in datasets: data, marker = dataset_mapping[dataset_name] subset_labels = labels[:len(data)] ax.scatter(data['x'], data['y'], c=subset_labels, cmap='viridis', marker=marker, label=dataset_name) labels = labels[len(data):] ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X') ax.set_xlim(0, 100) ax.set_ylim(0, 100) ax.set_title(f"K-means 클러스터링 결과 (k={k_value})", fontproperties=fontprop) ax.legend(prop=fontprop) st.pyplot(fig) if __name__ == "__main__": main()