File size: 6,777 Bytes
ff27984
68fece7
 
 
 
 
 
ed0deaf
e9b7506
68fece7
28c3672
a63a0bc
bbe37ce
1576be4
 
 
 
 
bbe37ce
1576be4
 
28c3672
1576be4
 
b71b552
a63a0bc
bbe37ce
 
1576be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbe37ce
1576be4
bbe37ce
1576be4
 
 
 
 
bbe37ce
 
1576be4
 
e9b7506
28c3672
e9b7506
a63a0bc
 
 
 
 
e9b7506
 
 
 
 
 
 
a63a0bc
 
 
e9b7506
 
 
 
 
a63a0bc
e9b7506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63a0bc
e9b7506
68fece7
e9b7506
68fece7
e9b7506
 
 
68fece7
a63a0bc
68fece7
 
a63a0bc
 
 
 
 
 
e9b7506
 
a63a0bc
 
 
 
 
 
e9b7506
 
a63a0bc
 
 
 
 
 
 
 
e9b7506
a63a0bc
 
 
 
ff27984
68fece7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm, skew
import platform
import os
import matplotlib.font_manager as fm  # [์ˆ˜์ • 1] ๋ˆ„๋ฝ๋˜์—ˆ๋˜ ํฐํŠธ ๊ด€๋ฆฌ์ž ๋ชจ๋“ˆ import

# --- set_korean_font ํ•จ์ˆ˜๋ฅผ ์•„๋ž˜ ์ฝ”๋“œ๋กœ ๊ต์ฒดํ•ด์ฃผ์„ธ์š” ---
def set_korean_font():
    """
    Hugging Face Space ๋˜๋Š” Streamlit Cloud ํ™˜๊ฒฝ์—์„œ ํ•œ๊ธ€ ํฐํŠธ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
    1. ์ง€์ •๋œ ๊ฒฝ๋กœ์— ํฐํŠธ ํŒŒ์ผ์ด ์žˆ๋Š”์ง€ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.
    2. ํŒŒ์ผ์ด ์—†๋‹ค๋ฉด ๊ฒฝ๊ณ ๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค.
    3. ํŒŒ์ผ์ด ์žˆ๋‹ค๋ฉด ํ•ด๋‹น ํฐํŠธ๋ฅผ matplotlib์˜ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
    4. ํ˜น์‹œ ๋ชจ๋ฅผ ์บ์‹œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์บ์‹œ๋ฅผ ์žฌ์ƒ์„ฑํ•˜๋Š” ์˜ต์…˜์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    """
    # ํฐํŠธ ํŒŒ์ผ ์ด๋ฆ„ ์ง€์ •
    font_filename = "NanumGaRamYeonGgoc.ttf"
    
    # ์‹œ์Šคํ…œ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ํฐํŠธ ๊ฒฝ๋กœ ํƒ์ƒ‰
    # (Hugging Face, Streamlit Cloud์™€ ๊ฐ™์€ ๋ฆฌ๋ˆ…์Šค ๊ธฐ๋ฐ˜ ํ™˜๊ฒฝ์„ ๊ฐ€์ •)
    font_path = None

    if os.path.exists(font_path):
        try:
            # ํฐํŠธ ํ”„๋กœํผํ‹ฐ๋ฅผ ์„ค์ •ํ•˜๊ณ  matplotlib์˜ rcParams์— ๋“ฑ๋ก
            font_prop = fm.FontProperties(fname=font_path)
            fm.fontManager.addfont(font_path) # ์บ์‹œ์— ํฐํŠธ ์ถ”๊ฐ€
            plt.rc('font', family=font_prop.get_name())
            
            # ์„ฑ๊ณต ๋ฉ”์‹œ์ง€ ํ‘œ์‹œ (Streamlit ๋ Œ๋”๋ง ๊ณผ์ •์—์„œ ์˜ค๋ฅ˜ ๋ฐฉ์ง€)
            try:
                st.sidebar.success(f"'{font_prop.get_name()}' ํฐํŠธ ๋กœ๋”ฉ ์„ฑ๊ณต!")
            except Exception:
                pass
        except Exception as e:
            try:
                st.sidebar.error(f"ํฐํŠธ ๋กœ๋”ฉ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {e}")
            except Exception:
                pass
    else:
        # ํฐํŠธ ํŒŒ์ผ์ด ์—†์„ ๊ฒฝ์šฐ ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€
        try:
            st.sidebar.warning(f"ํฐํŠธ ํŒŒ์ผ({font_filename})์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ์•ฑ์˜ ๋ฃจํŠธ ๋””๋ ‰ํ† ๋ฆฌ์— ํฐํŠธ ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•˜์„ธ์š”.")
            # matplotlib์˜ ํฐํŠธ ์บ์‹œ๋ฅผ ๊ฐ•์ œ๋กœ ๋‹ค์‹œ ๋นŒ๋“œ (๋””๋ฒ„๊น…์šฉ)
            # st.sidebar.info("Matplotlib ํฐํŠธ ์บ์‹œ๋ฅผ ์žฌ๋นŒ๋“œํ•ฉ๋‹ˆ๋‹ค...")
            # fm._rebuild()
            # st.sidebar.info("์บ์‹œ ์žฌ๋นŒ๋“œ ์™„๋ฃŒ. ์•ฑ์„ ์ƒˆ๋กœ๊ณ ์นจํ•˜์„ธ์š”.")
        except Exception:
            pass

    # ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๊ฐ€ ๊นจ์ง€๋Š” ํ˜„์ƒ ๋ฐฉ์ง€
    plt.rcParams['axes.unicode_minus'] = False
    
# --- ์ ์ˆ˜ ๋ถ„์„ ํ•จ์ˆ˜ ---
def analyze_scores(df):
    """๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ๋ฐ›์•„ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ‘œ์‹œํ•˜๋Š” ํ•จ์ˆ˜"""
    st.subheader("๋ฐ์ดํ„ฐ ๋ฏธ๋ฆฌ๋ณด๊ธฐ (์ƒ์œ„ 5๊ฐœ)")
    st.dataframe(df.head())

    # ์ˆซ์ž ํ˜•์‹์˜ ์—ด๋งŒ ์„ ํƒ์ง€๋กœ ์ œ๊ณตํ•˜์—ฌ ์˜ค๋ฅ˜ ๋ฐฉ์ง€
    numeric_columns = df.select_dtypes(include=np.number).columns.tolist()
    if not numeric_columns:
        st.error("๋ฐ์ดํ„ฐ์—์„œ ๋ถ„์„ ๊ฐ€๋Šฅํ•œ ์ˆซ์ž ํ˜•์‹์˜ ์—ด์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
        return

    score_column = st.selectbox("๋ถ„์„ํ•  ์ ์ˆ˜ ์—ด(column)์„ ์„ ํƒํ•˜์„ธ์š”:", numeric_columns)

    if score_column:
        scores = df[score_column].dropna()
        st.subheader(f"'{score_column}' ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„ ๊ฒฐ๊ณผ")

        # 1. ๊ธฐ์ˆ  ํ†ต๊ณ„๋Ÿ‰
        st.write("#### ๐Ÿ“ˆ ๊ธฐ์ˆ  ํ†ต๊ณ„๋Ÿ‰")
        st.table(scores.describe())

        # 2. ๋ถ„ํฌ ์‹œ๊ฐํ™”
        st.write("#### ๐ŸŽจ ์ ์ˆ˜ ๋ถ„ํฌ ์‹œ๊ฐํ™”")
        fig, ax = plt.subplots(figsize=(10, 6))
        sns.histplot(scores, kde=True, stat='density', label='ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ', ax=ax)
        mu, std = norm.fit(scores)
        xmin, xmax = plt.xlim()
        x = np.linspace(xmin, xmax, 100)
        p = norm.pdf(x, mu, std)
        ax.plot(x, p, 'k', linewidth=2, label='์ •๊ทœ๋ถ„ํฌ ๊ณก์„ ')
        ax.set_title(f"'{score_column}' ์ ์ˆ˜ ๋ถ„ํฌ (ํ‰๊ท : {mu:.2f}, ํ‘œ์ค€ํŽธ์ฐจ: {std:.2f})")
        ax.set_xlabel('์ ์ˆ˜'); ax.set_ylabel('๋ฐ€๋„'); ax.legend()
        st.pyplot(fig)

        # 3. ์™œ๋„(Skewness) ๋ถ„์„
        st.write("#### ๐Ÿ“ ์™œ๋„ (Skewness) ๋ถ„์„")
        skewness = skew(scores)
        st.metric(label="์™œ๋„ (Skewness)", value=f"{skewness:.4f}")

        if skewness > 0.5:
            st.info("๊ผฌ๋ฆฌ๊ฐ€ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๊ธด ๋ถ„ํฌ (Positive Skew): ๋Œ€๋ถ€๋ถ„์˜ ํ•™์ƒ๋“ค์ด ํ‰๊ท ๋ณด๋‹ค ๋‚ฎ์€ ์ ์ˆ˜์— ๋ชฐ๋ ค์žˆ๊ณ , ์ผ๋ถ€ ๊ณ ๋“์ ์ž๋“ค์ด ํ‰๊ท ์„ ๋†’์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.")
        elif skewness < -0.5:
            st.info("๊ผฌ๋ฆฌ๊ฐ€ ์™ผ์ชฝ์œผ๋กœ ๊ธด ๋ถ„ํฌ (Negative Skew): ๋Œ€๋ถ€๋ถ„์˜ ํ•™์ƒ๋“ค์ด ํ‰๊ท ๋ณด๋‹ค ๋†’์€ ์ ์ˆ˜์— ๋ชฐ๋ ค์žˆ๊ณ , ์ผ๋ถ€ ์ €๋“์ ์ž๋“ค์ด ํ‰๊ท ์„ ๋‚ฎ์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.")
        else:
            st.info("๋Œ€์นญ์— ๊ฐ€๊นŒ์šด ๋ถ„ํฌ: ์ ์ˆ˜๊ฐ€ ํ‰๊ท ์„ ์ค‘์‹ฌ์œผ๋กœ ๋น„๊ต์  ๊ณ ๋ฅด๊ฒŒ ๋ถ„ํฌ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.")

# --- ๋ฉ”์ธ ์‹คํ–‰ ํ•จ์ˆ˜ ---
def main():
    st.set_page_config(layout="wide") # ํŽ˜์ด์ง€ ๋ ˆ์ด์•„์›ƒ์„ ๋„“๊ฒŒ ์„ค์ •
    set_korean_font() # ์•ฑ ์‹œ์ž‘ ์‹œ ํฐํŠธ ์„ค์ • ๋จผ์ € ์‹คํ–‰
    
    st.title("ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„ ๋„๊ตฌ ๐Ÿ“Š")
    st.write("CSV ํŒŒ์ผ์„ ์ง์ ‘ ์—…๋กœ๋“œํ•˜๊ฑฐ๋‚˜ Google Sheets URL์„ ๋ถ™์—ฌ๋„ฃ์–ด ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.")
    st.write("---")

    st.sidebar.title("๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ")
    source_option = st.sidebar.radio("๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์„ ํƒํ•˜์„ธ์š”:", ("Google Sheets URL", "CSV ํŒŒ์ผ ์—…๋กœ๋“œ"))
    
    df = None

    if source_option == "Google Sheets URL":
        sample_url = "https://docs.google.com/spreadsheets/d/e/2PACX-1vQ2Z8kzJq2sM7w2_9gXo-jZ-mO5o-BvC-w5p2nJ6oJ7oJ9xL-w3kZ9j5Z3kX7vN1aQ4mB1cW8jB7fR/pub?gid=0&single=true&output=csv"
        url = st.sidebar.text_input("์›น์— ๊ฒŒ์‹œ๋œ Google Sheets CSV URL", value=sample_url)
        if url:
            try:
                df = pd.read_csv(url)
            except Exception as e:
                st.error(f"URL๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ฝ๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {e}")
                st.warning("์˜ฌ๋ฐ”๋ฅธ Google Sheets '์›น ๊ฒŒ์‹œ' CSV URL์ธ์ง€ ํ™•์ธํ•ด์ฃผ์„ธ์š”.")

    # [์ˆ˜์ • 2] elif์˜ ๋“ค์—ฌ์“ฐ๊ธฐ๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ if์™€ ๊ฐ™์€ ๋ ˆ๋ฒจ๋กœ ๋งž์ถค
    elif source_option == "CSV ํŒŒ์ผ ์—…๋กœ๋“œ":
        uploaded_file = st.sidebar.file_uploader("CSV ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•˜์„ธ์š”.", type="csv")
        if uploaded_file:
            try:
                df = pd.read_csv(uploaded_file, encoding='utf-8-sig')
            except Exception as e:
                st.error(f"ํŒŒ์ผ์„ ์ฝ๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {e}")

    # ๋ฐ์ดํ„ฐ๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ๋กœ๋“œ๋œ ๊ฒฝ์šฐ์—๋งŒ ๋ถ„์„ ํ•จ์ˆ˜ ์‹คํ–‰
    if df is not None:
        analyze_scores(df)
    else:
        st.info("์‚ฌ์ด๋“œ๋ฐ”์—์„œ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์„ ํƒํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์™€์ฃผ์„ธ์š”.")

if __name__ == '__main__':
    main()