File size: 13,010 Bytes
ff27984
68fece7
 
 
 
 
 
ed0deaf
8702770
43f1594
 
68fece7
d107d23
 
 
43f1594
d107d23
 
f3b2732
d107d23
 
 
 
 
 
43f1594
d107d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43f1594
d107d23
 
8702770
a63a0bc
 
43f1594
a63a0bc
 
43f1594
e9b7506
 
43f1594
e9b7506
 
43f1594
a63a0bc
 
 
8702770
 
43f1594
8702770
 
43f1594
e9b7506
d107d23
43f1594
 
 
 
 
 
 
 
 
 
 
 
 
 
a63a0bc
d107d23
e9b7506
f5b5cdc
8702770
f3b2732
 
 
 
 
 
d107d23
43f1594
d107d23
 
f5b5cdc
 
8702770
d107d23
 
 
43f1594
d107d23
43f1594
f5b5cdc
f3b2732
 
 
 
 
 
 
d107d23
43f1594
f3b2732
43f1594
f5b5cdc
f3b2732
43f1594
f5b5cdc
 
8702770
f5b5cdc
8702770
d107d23
43f1594
 
d107d23
f5b5cdc
43f1594
 
f5b5cdc
 
43f1594
f5b5cdc
 
8702770
43f1594
 
e9b7506
43f1594
 
8702770
 
43f1594
 
 
 
 
 
 
d107d23
43f1594
d107d23
43f1594
d107d23
43f1594
 
d107d23
8702770
d107d23
43f1594
 
 
d107d23
 
 
 
 
 
 
 
 
 
43f1594
 
 
 
 
 
 
 
 
 
8702770
d107d23
68fece7
 
8702770
43f1594
8702770
d107d23
8702770
 
43f1594
 
 
f5b5cdc
43f1594
 
d107d23
43f1594
 
d107d23
43f1594
d107d23
 
 
 
 
 
 
 
f5b5cdc
43f1594
68fece7
43f1594
8702770
 
43f1594
 
8702770
a63a0bc
 
 
43f1594
8702770
43f1594
8702770
43f1594
8702770
a63a0bc
43f1594
 
 
 
 
 
 
 
 
 
 
 
 
 
a63a0bc
43f1594
 
8702770
 
 
 
 
43f1594
 
 
 
 
 
 
 
 
8702770
43f1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8702770
43f1594
a63a0bc
 
43f1594
8702770
43f1594
 
 
 
 
 
 
 
 
 
 
 
 
ff27984
68fece7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm, skew
import platform
import os
import matplotlib.font_manager as fm
import warnings
warnings.filterwarnings('ignore')

# ์‹ฌํ”Œํ•œ ํ•œ๊ธ€ ํฐํŠธ ์„ค์ • - ์•ฑ ์‹œ์ž‘์‹œ ํ•œ๋ฒˆ๋งŒ ์‹คํ–‰
def setup_korean_font():
    """ํ•œ๊ธ€ ํฐํŠธ๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์„ค์ •ํ•˜๋Š” ํ•จ์ˆ˜"""
    try:
        # 1. ์‚ฌ์šฉ์ž ํฐํŠธ ํŒŒ์ผ ํ™•์ธ
        script_dir = os.path.dirname(os.path.abspath(__file__))
        possible_fonts = ["NanumGothic.ttf"]
        
        font_path = None
        for font_file in possible_fonts:
            candidate = os.path.join(script_dir, font_file)
            if os.path.exists(candidate):
                font_path = candidate
                break
        
        # 2. ํฐํŠธ ์ ์šฉ
        if font_path:
            # ํฐํŠธ ํŒŒ์ผ์ด ์žˆ์œผ๋ฉด ์ง์ ‘ ์‚ฌ์šฉ
            plt.rcParams['font.family'] = fm.FontProperties(fname=font_path).get_name()
            st.sidebar.success(f"ํฐํŠธ ๋กœ๋”ฉ ์„ฑ๊ณต: {os.path.basename(font_path)}")
        else:
            # ์‹œ์Šคํ…œ ๊ธฐ๋ณธ ํฐํŠธ ์‚ฌ์šฉ
            if platform.system() == 'Windows':
                plt.rcParams['font.family'] = 'Malgun Gothic'
            elif platform.system() == 'Darwin':  # macOS
                plt.rcParams['font.family'] = 'AppleGothic'
            else:  # Linux
                plt.rcParams['font.family'] = 'DejaVu Sans'
            
            st.sidebar.info(f"์‹œ์Šคํ…œ ๊ธฐ๋ณธ ํฐํŠธ ์‚ฌ์šฉ: {plt.rcParams['font.family']}")
        
        # ๋งˆ์ด๋„ˆ์Šค ๊ธฐํ˜ธ ๊นจ์ง ๋ฐฉ์ง€
        plt.rcParams['axes.unicode_minus'] = False
        
        return font_path
        
    except Exception as e:
        st.sidebar.warning(f"ํฐํŠธ ์„ค์ • ์˜ค๋ฅ˜: {e}")
        plt.rcParams['font.family'] = 'DejaVu Sans'
        plt.rcParams['axes.unicode_minus'] = False
        return None

# ์•ฑ ์‹œ์ž‘์‹œ ํฐํŠธ ์„ค์ •
FONT_PATH = setup_korean_font()

def analyze_scores(df):
    """๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ๋ฐ›์•„ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ‘œ์‹œํ•˜๋Š” ํ•จ์ˆ˜"""
    st.subheader("๐Ÿ“‹ ๋ฐ์ดํ„ฐ ๋ฏธ๋ฆฌ๋ณด๊ธฐ (์ƒ์œ„ 5๊ฐœ)")
    st.dataframe(df.head())

    # ์ˆซ์ž ํ˜•์‹์˜ ์—ด๋งŒ ์„ ํƒ์ง€๋กœ ์ œ๊ณต
    numeric_columns = df.select_dtypes(include=np.number).columns.tolist()
    if not numeric_columns:
        st.error("โŒ ๋ฐ์ดํ„ฐ์—์„œ ๋ถ„์„ ๊ฐ€๋Šฅํ•œ ์ˆซ์ž ํ˜•์‹์˜ ์—ด์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
        return

    score_column = st.selectbox("๐Ÿ“Š ๋ถ„์„ํ•  ์ ์ˆ˜ ์—ด(column)์„ ์„ ํƒํ•˜์„ธ์š”:", numeric_columns)

    if score_column:
        scores = df[score_column].dropna()
        
        if len(scores) == 0:
            st.error("โŒ ์„ ํƒํ•œ ์—ด์— ์œ ํšจํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
            return
            
        st.subheader(f"๐Ÿ“ˆ '{score_column}' ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„ ๊ฒฐ๊ณผ")

        # 1. ๊ธฐ๋ณธ ํ†ต๊ณ„๋Ÿ‰
        st.write("#### ๐Ÿ“Š ๊ธฐ๋ณธ ํ†ต๊ณ„๋Ÿ‰")
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            st.metric("ํ‰๊ท ", f"{scores.mean():.2f}")
        with col2:
            st.metric("ํ‘œ์ค€ํŽธ์ฐจ", f"{scores.std():.2f}")
        with col3:
            st.metric("์ตœ์†Ÿ๊ฐ’", f"{scores.min():.2f}")
        with col4:
            st.metric("์ตœ๋Œ“๊ฐ’", f"{scores.max():.2f}")
        
        # ์ƒ์„ธ ํ†ต๊ณ„
        st.write("#### ๐Ÿ“‹ ์ƒ์„ธ ํ†ต๊ณ„๋Ÿ‰")
        st.dataframe(scores.describe().to_frame().T)

        # 2. ๋ถ„ํฌ ์‹œ๊ฐํ™”
        st.write("#### ๐ŸŽจ ์ ์ˆ˜ ๋ถ„ํฌ ์‹œ๊ฐํ™”")
        
        try:
            # ํ•œ๊ธ€ ํฐํŠธ ์ค€๋น„
            if FONT_PATH:
                font_prop = fm.FontProperties(fname=FONT_PATH)
            else:
                font_prop = fm.FontProperties(family=plt.rcParams['font.family'])
            
            fig, ax = plt.subplots(figsize=(12, 7))
            
            # ํžˆ์Šคํ† ๊ทธ๋žจ๊ณผ KDE ๊ณก์„ 
            sns.histplot(scores, kde=True, stat='density', alpha=0.7, ax=ax, color='skyblue')
            
            # ์ •๊ทœ๋ถ„ํฌ ๊ณก์„  ์ถ”๊ฐ€
            mu, std = norm.fit(scores)
            x = np.linspace(scores.min(), scores.max(), 100)
            y = norm.pdf(x, mu, std)
            ax.plot(x, y, 'r-', linewidth=2, label=f'์ •๊ทœ๋ถ„ํฌ (ฮผ={mu:.1f}, ฯƒ={std:.1f})')
            
            # ํ‰๊ท ์„ 
            ax.axvline(mu, color='red', linestyle=':', linewidth=2, alpha=0.8, label=f'ํ‰๊ท : {mu:.1f}')
            
            # ์ œ๋ชฉ๊ณผ ๋ผ๋ฒจ - ํ•œ๊ธ€ ํฐํŠธ ์ง์ ‘ ์ง€์ •
            ax.set_title(f'{score_column} ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„', fontproperties=font_prop, fontsize=16, pad=20)
            ax.set_xlabel('์ ์ˆ˜', fontproperties=font_prop, fontsize=12)
            ax.set_ylabel('๋ฐ€๋„', fontproperties=font_prop, fontsize=12)
            
            # ๋ฒ”๋ก€ - ํ•œ๊ธ€ ํฐํŠธ ์ ์šฉ
            legend = ax.legend(prop=font_prop, fontsize=10)
            ax.grid(True, alpha=0.3)
            
            # ํ†ต๊ณ„ ์ •๋ณด ๋ฐ•์Šค - ํ•œ๊ธ€ ํฐํŠธ ์ ์šฉ
            stats_text = f'์ƒ˜ํ”Œ ์ˆ˜: {len(scores)}\nํ‰๊ท : {mu:.2f}\nํ‘œ์ค€ํŽธ์ฐจ: {std:.2f}\n์ตœ์†Ÿ๊ฐ’: {scores.min():.1f}\n์ตœ๋Œ“๊ฐ’: {scores.max():.1f}'
            ax.text(0.02, 0.98, stats_text, transform=ax.transAxes, 
                   fontproperties=font_prop, fontsize=10, verticalalignment='top',
                   bbox=dict(boxstyle='round,pad=0.5', facecolor='lightblue', alpha=0.8))
            
            plt.tight_layout()
            st.pyplot(fig)
            
        except Exception as e:
            st.error(f"โŒ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ์˜ค๋ฅ˜: {e}")
            
            # ๋Œ€์ฒด ๊ทธ๋ž˜ํ”„ (์˜์–ด๋งŒ ์‚ฌ์šฉ)
            st.write("**Simple Chart (English):**")
            fig2, ax2 = plt.subplots(figsize=(10, 6))
            ax2.hist(scores, bins=15, alpha=0.7, color='lightcoral', edgecolor='black')
            ax2.set_title(f'Distribution of {score_column}', fontsize=14)
            ax2.set_xlabel('Score')
            ax2.set_ylabel('Frequency')
            ax2.grid(True, alpha=0.3)
            st.pyplot(fig2)
            plt.close(fig2)
        finally:
            if 'fig' in locals():
                plt.close(fig)

        # 3. ์™œ๋„ ๋ถ„์„
        st.write("#### ๐Ÿ“ ๋ถ„ํฌ ํ˜•ํƒœ ๋ถ„์„ (์™œ๋„)")
        try:
            skewness = skew(scores)
            col1, col2 = st.columns([1, 2])
            
            with col1:
                st.metric("์™œ๋„ (Skewness)", f"{skewness:.4f}")
            
            with col2:
                if skewness > 0.5:
                    st.success("๐Ÿ”ด **์–‘์˜ ์™œ๋„**: ๋Œ€๋ถ€๋ถ„ ํ•™์ƒ์ด ๋‚ฎ์€ ์ ์ˆ˜๋Œ€์— ๋ถ„ํฌ, ์†Œ์ˆ˜์˜ ๊ณ ๋“์ ์ž ์กด์žฌ")
                elif skewness < -0.5:
                    st.success("๐Ÿ”ต **์Œ์˜ ์™œ๋„**: ๋Œ€๋ถ€๋ถ„ ํ•™์ƒ์ด ๋†’์€ ์ ์ˆ˜๋Œ€์— ๋ถ„ํฌ, ์†Œ์ˆ˜์˜ ์ €๋“์ ์ž ์กด์žฌ")
                else:
                    st.success("๐ŸŸข **๋Œ€์นญ ๋ถ„ํฌ**: ์ ์ˆ˜๊ฐ€ ํ‰๊ท ์„ ์ค‘์‹ฌ์œผ๋กœ ๊ณ ๋ฅด๊ฒŒ ๋ถ„ํฌ")
                    
        except Exception as e:
            st.error(f"์™œ๋„ ๊ณ„์‚ฐ ์˜ค๋ฅ˜: {e}")

        # 4. ๊ตฌ๊ฐ„๋ณ„ ๋ถ„ํฌ
        st.write("#### ๐Ÿ“‹ ๊ตฌ๊ฐ„๋ณ„ ๋ถ„ํฌ")
        
        try:
            if scores.max() <= 100:  # 100์  ๋งŒ์  ๊ฐ€์ •
                bins_labels = ['0-60', '61-70', '71-80', '81-90', '91-100']
                bins_edges = [0, 60, 70, 80, 90, 100]
            else:
                # ๋™์  ๊ตฌ๊ฐ„ ์ƒ์„ฑ
                min_score, max_score = scores.min(), scores.max()
                interval = (max_score - min_score) / 5
                bins_edges = [min_score + i * interval for i in range(6)]
                bins_labels = [f'{bins_edges[i]:.0f}-{bins_edges[i+1]:.0f}' for i in range(5)]
            
            score_counts = pd.cut(scores, bins=bins_edges, labels=bins_labels, include_lowest=True).value_counts().sort_index()
            score_percentages = (score_counts / len(scores) * 100).round(1)
            
            result_df = pd.DataFrame({
                '๊ตฌ๊ฐ„': score_counts.index,
                'ํ•™์ƒ ์ˆ˜': score_counts.values,
                '๋น„์œจ (%)': score_percentages.values
            })
            st.dataframe(result_df)
            
        except Exception as e:
            st.warning(f"๊ตฌ๊ฐ„ ๋ถ„์„ ์˜ค๋ฅ˜: {e}")

def main():
    st.set_page_config(
        page_title="ํ•™์ƒ ์ ์ˆ˜ ๋ถ„์„ ๋„๊ตฌ",
        page_icon="๐Ÿ“Š",
        layout="wide"
    )
    
    # ์ œ๋ชฉ
    st.title("๐Ÿ“Š ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„ ๋„๊ตฌ")
    st.markdown("**CSV ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•˜๊ฑฐ๋‚˜ Google Sheets URL์„ ์ž…๋ ฅํ•˜์—ฌ ์ ์ˆ˜ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•˜์„ธ์š”**")
    
    # ํฐํŠธ ์ •๋ณด ํ‘œ์‹œ
    with st.expander("๐Ÿ”ง ํฐํŠธ ์„ค์ • ์ •๋ณด"):
        st.write(f"**ํ˜„์žฌ ํฐํŠธ**: {plt.rcParams['font.family']}")
        st.write(f"**ํฐํŠธ ๊ฒฝ๋กœ**: {FONT_PATH if FONT_PATH else '์‹œ์Šคํ…œ ๊ธฐ๋ณธ'}")
        
        # ๊ฐ„๋‹จํ•œ ํฐํŠธ ํ…Œ์ŠคํŠธ
        if st.button("ํฐํŠธ ํ…Œ์ŠคํŠธ"):
            fig, ax = plt.subplots(figsize=(6, 2))
            ax.text(0.5, 0.5, 'ํ•œ๊ธ€ ํฐํŠธ ํ…Œ์ŠคํŠธ: ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„', 
                   ha='center', va='center', fontsize=14)
            ax.set_xlim(0, 1)
            ax.set_ylim(0, 1)
            ax.axis('off')
            st.pyplot(fig)
            plt.close(fig)
    
    st.markdown("---")

    # ์‚ฌ์ด๋“œ๋ฐ” - ๋ฐ์ดํ„ฐ ์ž…๋ ฅ
    st.sidebar.title("๐Ÿ“ ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ")
    source_option = st.sidebar.radio(
        "๋ฐ์ดํ„ฐ ์†Œ์Šค ์„ ํƒ:", 
        ("๐Ÿ“ค CSV ํŒŒ์ผ ์—…๋กœ๋“œ", "๐Ÿ”— Google Sheets URL", "๐ŸŽฒ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ")
    )
    
    df = None

    if source_option == "๐Ÿ“ค CSV ํŒŒ์ผ ์—…๋กœ๋“œ":
        uploaded_file = st.sidebar.file_uploader(
            "CSV ํŒŒ์ผ์„ ์„ ํƒํ•˜์„ธ์š”", 
            type=["csv"],
            help="UTF-8, CP949 ๋“ฑ ๋‹ค์–‘ํ•œ ์ธ์ฝ”๋”ฉ์„ ์ž๋™์œผ๋กœ ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค"
        )
        if uploaded_file:
            encodings = ['utf-8-sig', 'utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    df = pd.read_csv(uploaded_file, encoding=encoding)
                    st.sidebar.success(f"โœ… ํŒŒ์ผ ๋กœ๋”ฉ ์„ฑ๊ณต! (์ธ์ฝ”๋”ฉ: {encoding})")
                    break
                except UnicodeDecodeError:
                    continue
                except Exception as e:
                    st.sidebar.error(f"ํŒŒ์ผ ์ฝ๊ธฐ ์˜ค๋ฅ˜: {e}")
                    break
            
            if df is None:
                st.sidebar.error("โŒ ํŒŒ์ผ ์ธ์ฝ”๋”ฉ์„ ์ธ์‹ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")

    elif source_option == "๐Ÿ”— Google Sheets URL":
        st.sidebar.info("๐Ÿ’ก Google Sheets๋ฅผ '์›น์— ๊ฒŒ์‹œ'ํ•œ ํ›„ CSV URL์„ ์ž…๋ ฅํ•˜์„ธ์š”")
        url = st.sidebar.text_input(
            "Google Sheets CSV URL", 
            placeholder="https://docs.google.com/spreadsheets/d/..."
        )
        
        if url and "docs.google.com" in url:
            try:
                with st.spinner("๐Ÿ“ฅ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์ค‘..."):
                    df = pd.read_csv(url)
                st.sidebar.success("โœ… Google Sheets ๋กœ๋”ฉ ์„ฑ๊ณต!")
            except Exception as e:
                st.sidebar.error(f"โŒ URL ๋กœ๋”ฉ ์‹คํŒจ: {e}")
        elif url:
            st.sidebar.warning("โš ๏ธ ์˜ฌ๋ฐ”๋ฅธ Google Sheets URL์„ ์ž…๋ ฅํ•˜์„ธ์š”")

    elif source_option == "๐ŸŽฒ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ":
        if st.sidebar.button("์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ"):
            np.random.seed(42)
            sample_size = st.sidebar.slider("์ƒ˜ํ”Œ ํฌ๊ธฐ", 50, 500, 100)
            
            df = pd.DataFrame({
                'ํ•™์ƒ๋ฒˆํ˜ธ': range(1, sample_size + 1),
                '์ˆ˜ํ•™์ ์ˆ˜': np.random.normal(75, 15, sample_size).clip(0, 100).round(1),
                '์˜์–ด์ ์ˆ˜': np.random.normal(80, 12, sample_size).clip(0, 100).round(1),
                '๊ณผํ•™์ ์ˆ˜': np.random.normal(70, 18, sample_size).clip(0, 100).round(1),
                '๊ตญ์–ด์ ์ˆ˜': np.random.normal(77, 14, sample_size).clip(0, 100).round(1)
            })
            st.sidebar.success(f"โœ… {sample_size}๋ช…์˜ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ!")

    # ๋ฉ”์ธ ๋ถ„์„
    if df is not None and not df.empty:
        st.success(f"๐ŸŽ‰ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์™„๋ฃŒ! **{len(df)}๊ฐœ ํ–‰, {len(df.columns)}๊ฐœ ์—ด**")
        analyze_scores(df)
    else:
        st.info("๐Ÿ‘ˆ **์‚ฌ์ด๋“œ๋ฐ”์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํƒํ•˜์„ธ์š”**")
        
        # ๊ธฐ๋Šฅ ์•ˆ๋‚ด
        st.markdown("""
        ### ๐Ÿ” ์ฃผ์š” ๊ธฐ๋Šฅ
        - **๐Ÿ“Š ๊ธฐ๋ณธ ํ†ต๊ณ„**: ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์ตœ์†Ÿ๊ฐ’, ์ตœ๋Œ“๊ฐ’ ๋“ฑ
        - **๐Ÿ“ˆ ๋ถ„ํฌ ์‹œ๊ฐํ™”**: ํžˆ์Šคํ† ๊ทธ๋žจ, KDE ๊ณก์„ , ์ •๊ทœ๋ถ„ํฌ ๋น„๊ต
        - **๐Ÿ“ ์™œ๋„ ๋ถ„์„**: ๋ถ„ํฌ์˜ ๋น„๋Œ€์นญ์„ฑ ์ธก์ •
        - **๐Ÿ“‹ ๊ตฌ๊ฐ„๋ณ„ ๋ถ„ํฌ**: ์ ์ˆ˜ ๊ตฌ๊ฐ„๋ณ„ ํ•™์ƒ ์ˆ˜ ๋ฐ ๋น„์œจ
        
        ### ๐Ÿ“ ์ง€์› ํ˜•์‹
        - **CSV ํŒŒ์ผ**: UTF-8, CP949, EUC-KR ๋“ฑ ์ž๋™ ์ธ์ฝ”๋”ฉ ๊ฐ์ง€
        - **Google Sheets**: ์›น์— ๊ฒŒ์‹œ๋œ ์‹œํŠธ์˜ CSV URL
        - **์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ**: ํ…Œ์ŠคํŠธ์šฉ ๊ฐ€์ƒ ์ ์ˆ˜ ๋ฐ์ดํ„ฐ
        """)

if __name__ == '__main__':
    main()