streamlit-example-vibe / src /streamlit_app.py
JUNGU's picture
Update src/streamlit_app.py
bbe37ce verified
raw
history blame
5.48 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm, skew
import platform
# --- ๊ธฐ์กด set_korean_font ํ•จ์ˆ˜๋ฅผ ์•„๋ž˜ ์ฝ”๋“œ๋กœ ์ „์ฒด ๊ต์ฒดํ•ด์ฃผ์„ธ์š” ---
def set_korean_font():
"""
Hugging Face Space์— ํฌํ•จ๋œ ํฐํŠธ ํŒŒ์ผ์„ ์ง์ ‘ ์ง€์ •ํ•˜์—ฌ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
"""
# 1. ์‚ฌ์šฉ์ž๊ฐ€ ์—…๋กœ๋“œํ•œ ํฐํŠธ ํŒŒ์ผ์˜ ๊ฒฝ๋กœ์™€ ์ด๋ฆ„์„ ์ •ํ™•ํžˆ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค.
# ์Šคํฌ๋ฆฐ์ƒท ๊ธฐ์ค€์œผ๋กœ, ํŒŒ์ผ์ด ์ตœ์ƒ์œ„ ๊ฒฝ๋กœ์— ์žˆ์œผ๋ฏ€๋กœ ์•„๋ž˜์™€ ๊ฐ™์ด ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
font_path = 'NanumGaRamYeonGgoc.ttf'
# 2. ํŒŒ์ผ์ด ์‹ค์ œ๋กœ ํ•ด๋‹น ๊ฒฝ๋กœ์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.
if os.path.exists(font_path):
# 3. ํฐํŠธ ํ”„๋กœํผํ‹ฐ๋ฅผ ๊ฐ€์ ธ์™€์„œ, matplotlib์˜ ๊ธฐ๋ณธ ํฐํŠธ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
font_prop = fm.FontProperties(fname=font_path)
plt.rc('font', family=font_prop.get_name())
# ์•ฑ์˜ ์‚ฌ์ด๋“œ๋ฐ”์— ์„ฑ๊ณต ๋ฉ”์‹œ์ง€๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค. (์„ ํƒ ์‚ฌํ•ญ)
try:
st.sidebar.success(f"'{font_prop.get_name()}' ํฐํŠธ ๋กœ๋”ฉ ์„ฑ๊ณต!")
except Exception:
# ์ŠคํŠธ๋ฆผ๋ฆฟ์˜ ์‹คํ–‰ ์ˆœ์„œ์— ๋”ฐ๋ผ ์˜ค๋ฅ˜๊ฐ€ ๋‚  ์ˆ˜ ์žˆ์–ด ์˜ˆ์™ธ ์ฒ˜๋ฆฌ
pass
else:
# 4. ํŒŒ์ผ์ด ์—†์„ ๊ฒฝ์šฐ, ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค.
try:
st.sidebar.warning(f"ํฐํŠธ ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค: '{font_path}'. ํ•œ๊ธ€์ด ๊นจ์ ธ ๋ณด์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.")
except Exception:
pass
# 5. ๋งˆ์ด๋„ˆ์Šค ๊ธฐํ˜ธ๊ฐ€ ๊นจ์ง€์ง€ ์•Š๋„๋ก ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
plt.rcParams['axes.unicode_minus'] = False
def analyze_scores(df):
"""๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ๋ฐ›์•„ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ‘œ์‹œํ•˜๋Š” ํ•จ์ˆ˜"""
st.subheader("๋ฐ์ดํ„ฐ ๋ฏธ๋ฆฌ๋ณด๊ธฐ (์ƒ์œ„ 5๊ฐœ)")
st.dataframe(df.head())
# ๋ถ„์„ํ•  ์ ์ˆ˜ ์—ด ์„ ํƒ
score_column = st.selectbox("๋ถ„์„ํ•  ์ ์ˆ˜ ์—ด(column)์„ ์„ ํƒํ•˜์„ธ์š”:", df.columns)
if score_column:
scores = df[score_column].dropna()
if pd.api.types.is_numeric_dtype(scores):
st.subheader(f"'{score_column}' ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„ ๊ฒฐ๊ณผ")
# 1. ๊ธฐ์ˆ  ํ†ต๊ณ„๋Ÿ‰
st.write("#### ๐Ÿ“ˆ ๊ธฐ์ˆ  ํ†ต๊ณ„๋Ÿ‰")
st.table(scores.describe())
# 2. ๋ถ„ํฌ ์‹œ๊ฐํ™”
st.write("#### ๐ŸŽจ ์ ์ˆ˜ ๋ถ„ํฌ ์‹œ๊ฐํ™”")
fig, ax = plt.subplots(figsize=(10, 6))
sns.histplot(scores, kde=True, stat='density', label='ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ', ax=ax)
mu, std = norm.fit(scores)
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
ax.plot(x, p, 'k', linewidth=2, label='์ •๊ทœ๋ถ„ํฌ ๊ณก์„ ')
ax.set_title(f"'{score_column}' ์ ์ˆ˜ ๋ถ„ํฌ (ํ‰๊ท : {mu:.2f}, ํ‘œ์ค€ํŽธ์ฐจ: {std:.2f})")
ax.set_xlabel('์ ์ˆ˜'); ax.set_ylabel('๋ฐ€๋„'); ax.legend()
st.pyplot(fig)
# 3. ์™œ๋„(Skewness) ๋ถ„์„
st.write("#### ๐Ÿ“ ์™œ๋„ (Skewness) ๋ถ„์„")
skewness = skew(scores)
st.metric(label="์™œ๋„ (Skewness)", value=f"{skewness:.4f}")
if skewness > 0.5:
st.info("๊ผฌ๋ฆฌ๊ฐ€ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๊ธด ๋ถ„ํฌ (Positive Skew): ๋Œ€๋ถ€๋ถ„์˜ ํ•™์ƒ๋“ค์ด ํ‰๊ท ๋ณด๋‹ค ๋‚ฎ์€ ์ ์ˆ˜์— ๋ชฐ๋ ค์žˆ๊ณ , ์ผ๋ถ€ ๊ณ ๋“์ ์ž๋“ค์ด ํ‰๊ท ์„ ๋†’์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.")
elif skewness < -0.5:
st.info("๊ผฌ๋ฆฌ๊ฐ€ ์™ผ์ชฝ์œผ๋กœ ๊ธด ๋ถ„ํฌ (Negative Skew): ๋Œ€๋ถ€๋ถ„์˜ ํ•™์ƒ๋“ค์ด ํ‰๊ท ๋ณด๋‹ค ๋†’์€ ์ ์ˆ˜์— ๋ชฐ๋ ค์žˆ๊ณ , ์ผ๋ถ€ ์ €๋“์ ์ž๋“ค์ด ํ‰๊ท ์„ ๋‚ฎ์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.")
else:
st.info("๋Œ€์นญ์— ๊ฐ€๊นŒ์šด ๋ถ„ํฌ: ์ ์ˆ˜๊ฐ€ ํ‰๊ท ์„ ์ค‘์‹ฌ์œผ๋กœ ๋น„๊ต์  ๊ณ ๋ฅด๊ฒŒ ๋ถ„ํฌ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.")
else:
st.error(f"์˜ค๋ฅ˜: ์„ ํƒํ•˜์‹  '{score_column}' ์—ด์€ ์ˆซ์ž ๋ฐ์ดํ„ฐ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค. ์ˆซ์ž ํ˜•์‹์˜ ์—ด์„ ์„ ํƒํ•ด์ฃผ์„ธ์š”.")
def main():
set_korean_font()
st.title("ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ ๋ถ„์„ ๋„๊ตฌ ๐Ÿ“Š")
st.write("CSV ํŒŒ์ผ์„ ์ง์ ‘ ์—…๋กœ๋“œํ•˜๊ฑฐ๋‚˜ Google Sheets URL์„ ๋ถ™์—ฌ๋„ฃ์–ด ํ•™์ƒ ์ ์ˆ˜ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.")
st.write("---")
st.sidebar.title("๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ")
source_option = st.sidebar.radio("๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์„ ํƒํ•˜์„ธ์š”:", ("Google Sheets URL", "CSV ํŒŒ์ผ ์—…๋กœ๋“œ"))
df = None
if source_option == "Google Sheets URL":
url = st.sidebar.text_input("์›น์— ๊ฒŒ์‹œ๋œ Google Sheets CSV URL์„ ์ž…๋ ฅํ•˜์„ธ์š”.")
if url:
try:
df = pd.read_csv(url)
except Exception as e:
st.error(f"URL๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ฝ๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {e}")
st.warning("์˜ฌ๋ฐ”๋ฅธ Google Sheets '์›น ๊ฒŒ์‹œ' CSV URL์ธ์ง€ ํ™•์ธํ•ด์ฃผ์„ธ์š”.")
elif source_option == "CSV ํŒŒ์ผ ์—…๋กœ๋“œ":
uploaded_file = st.sidebar.file_uploader("CSV ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•˜์„ธ์š”.", type="csv")
if uploaded_file:
try:
df = pd.read_csv(uploaded_file, encoding='utf-8-sig')
except Exception as e:
st.error(f"ํŒŒ์ผ์„ ์ฝ๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {e}")
if df is not None:
analyze_scores(df)
else:
st.info("์‚ฌ์ด๋“œ๋ฐ”์—์„œ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์„ ํƒํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์™€์ฃผ์„ธ์š”.")
if __name__ == '__main__':
main()