Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ from PIL import Image
|
|
| 4 |
from torchvision import transforms
|
| 5 |
import gradio as gr
|
| 6 |
#https://huggingface.co/spaces/yuhe6/final_project/blob/main/CIFAR10_cnn.pth
|
| 7 |
-
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
|
| 8 |
|
| 9 |
#model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
|
| 10 |
model = torch.hub.load('/', 'CIFAR10_cnn', pretrained=True)
|
|
@@ -36,8 +36,10 @@ def inference(input_image):
|
|
| 36 |
# Read the categories
|
| 37 |
with open("imagenet_classes.txt", "r") as f:
|
| 38 |
categories = [s.strip() for s in f.readlines()]
|
|
|
|
|
|
|
| 39 |
# Show top categories per image
|
| 40 |
-
top5_prob, top5_catid = torch.topk(probabilities,
|
| 41 |
result = {}
|
| 42 |
for i in range(top5_prob.size(0)):
|
| 43 |
result[categories[top5_catid[i]]] = top5_prob[i].item()
|
|
|
|
| 4 |
from torchvision import transforms
|
| 5 |
import gradio as gr
|
| 6 |
#https://huggingface.co/spaces/yuhe6/final_project/blob/main/CIFAR10_cnn.pth
|
| 7 |
+
#os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
|
| 8 |
|
| 9 |
#model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
|
| 10 |
model = torch.hub.load('/', 'CIFAR10_cnn', pretrained=True)
|
|
|
|
| 36 |
# Read the categories
|
| 37 |
with open("imagenet_classes.txt", "r") as f:
|
| 38 |
categories = [s.strip() for s in f.readlines()]
|
| 39 |
+
with open("dog_cat.txt", "r") as f:
|
| 40 |
+
categories = [s.strip() for s in f.readlines()]
|
| 41 |
# Show top categories per image
|
| 42 |
+
top5_prob, top5_catid = torch.topk(probabilities, 1)
|
| 43 |
result = {}
|
| 44 |
for i in range(top5_prob.size(0)):
|
| 45 |
result[categories[top5_catid[i]]] = top5_prob[i].item()
|