Spaces:
Runtime error
Runtime error
| # Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: | |
| # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: | |
| # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import copy | |
| from dataclasses import dataclass, field | |
| import json | |
| import logging | |
| import pathlib | |
| from typing import Dict, Optional, Sequence, List | |
| import torch | |
| import transformers | |
| from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from torch.utils.data import Dataset | |
| from llava.train.llava_trainer import LLaVATrainer | |
| from llava import conversation as conversation_lib | |
| from llava.model import * | |
| from llava.mm_utils import tokenizer_image_token | |
| from PIL import Image | |
| local_rank = None | |
| def rank0_print(*args): | |
| if local_rank == 0: | |
| print(*args) | |
| class ModelArguments: | |
| model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
| version: Optional[str] = field(default="v0") | |
| freeze_backbone: bool = field(default=False) | |
| tune_mm_mlp_adapter: bool = field(default=False) | |
| vision_tower: Optional[str] = field(default=None) | |
| mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer | |
| pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
| mm_projector_type: Optional[str] = field(default='linear') | |
| mm_use_im_start_end: bool = field(default=False) | |
| mm_use_im_patch_token: bool = field(default=True) | |
| mm_vision_select_feature: Optional[str] = field(default="patch") | |
| class DataArguments: | |
| data_path: str = field(default=None, | |
| metadata={"help": "Path to the training data."}) | |
| lazy_preprocess: bool = False | |
| is_multimodal: bool = False | |
| image_folder: Optional[str] = field(default=None) | |
| image_aspect_ratio: str = 'square' | |
| class TrainingArguments(transformers.TrainingArguments): | |
| cache_dir: Optional[str] = field(default=None) | |
| optim: str = field(default="adamw_torch") | |
| remove_unused_columns: bool = field(default=False) | |
| freeze_mm_mlp_adapter: bool = field(default=False) | |
| mpt_attn_impl: Optional[str] = field(default="triton") | |
| model_max_length: int = field( | |
| default=512, | |
| metadata={ | |
| "help": | |
| "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
| }, | |
| ) | |
| double_quant: bool = field( | |
| default=True, | |
| metadata={"help": "Compress the quantization statistics through double quantization."} | |
| ) | |
| quant_type: str = field( | |
| default="nf4", | |
| metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} | |
| ) | |
| bits: int = field( | |
| default=16, | |
| metadata={"help": "How many bits to use."} | |
| ) | |
| lora_enable: bool = False | |
| lora_r: int = 64 | |
| lora_alpha: int = 16 | |
| lora_dropout: float = 0.05 | |
| lora_weight_path: str = "" | |
| lora_bias: str = "none" | |
| mm_projector_lr: Optional[float] = None | |
| group_by_modality_length: bool = field(default=False) | |
| def maybe_zero_3(param, ignore_status=False, name=None): | |
| from deepspeed import zero | |
| from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
| if hasattr(param, "ds_id"): | |
| if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
| if not ignore_status: | |
| logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
| with zero.GatheredParameters([param]): | |
| param = param.data.detach().cpu().clone() | |
| else: | |
| param = param.detach().cpu().clone() | |
| return param | |
| # Borrowed from peft.utils.get_peft_model_state_dict | |
| def get_peft_state_maybe_zero_3(named_params, bias): | |
| if bias == "none": | |
| to_return = {k: t for k, t in named_params if "lora_" in k} | |
| elif bias == "all": | |
| to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
| elif bias == "lora_only": | |
| to_return = {} | |
| maybe_lora_bias = {} | |
| lora_bias_names = set() | |
| for k, t in named_params: | |
| if "lora_" in k: | |
| to_return[k] = t | |
| bias_name = k.split("lora_")[0] + "bias" | |
| lora_bias_names.add(bias_name) | |
| elif "bias" in k: | |
| maybe_lora_bias[k] = t | |
| for k, t in maybe_lora_bias: | |
| if bias_name in lora_bias_names: | |
| to_return[bias_name] = t | |
| else: | |
| raise NotImplementedError | |
| to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
| return to_return | |
| def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
| to_return = {k: t for k, t in named_params if "lora_" not in k} | |
| if require_grad_only: | |
| to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
| to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
| return to_return | |
| def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
| to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
| to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
| return to_return | |
| def find_all_linear_names(model): | |
| cls = torch.nn.Linear | |
| lora_module_names = set() | |
| multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler'] | |
| for name, module in model.named_modules(): | |
| if any(mm_keyword in name for mm_keyword in multimodal_keywords): | |
| continue | |
| if isinstance(module, cls): | |
| names = name.split('.') | |
| lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
| if 'lm_head' in lora_module_names: # needed for 16-bit | |
| lora_module_names.remove('lm_head') | |
| return list(lora_module_names) | |
| def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, | |
| output_dir: str): | |
| """Collects the state dict and dump to disk.""" | |
| if getattr(trainer.args, "tune_mm_mlp_adapter", False): | |
| # Only save Adapter | |
| keys_to_match = ['mm_projector'] | |
| if getattr(trainer.args, "use_im_start_end", False): | |
| keys_to_match.extend(['embed_tokens', 'embed_in']) | |
| weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) | |
| trainer.model.config.save_pretrained(output_dir) | |
| current_folder = output_dir.split('/')[-1] | |
| parent_folder = os.path.dirname(output_dir) | |
| if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
| if current_folder.startswith('checkpoint-'): | |
| mm_projector_folder = os.path.join(parent_folder, "mm_projector") | |
| os.makedirs(mm_projector_folder, exist_ok=True) | |
| torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) | |
| else: | |
| torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) | |
| return | |
| if trainer.deepspeed: | |
| torch.cuda.synchronize() | |
| trainer.save_model(output_dir) | |
| return | |
| state_dict = trainer.model.state_dict() | |
| if trainer.args.should_save: | |
| cpu_state_dict = { | |
| key: value.cpu() | |
| for key, value in state_dict.items() | |
| } | |
| del state_dict | |
| trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
| def smart_tokenizer_and_embedding_resize( | |
| special_tokens_dict: Dict, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| model: transformers.PreTrainedModel, | |
| ): | |
| """Resize tokenizer and embedding. | |
| Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
| """ | |
| num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| if num_new_tokens > 0: | |
| input_embeddings = model.get_input_embeddings().weight.data | |
| output_embeddings = model.get_output_embeddings().weight.data | |
| input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
| dim=0, keepdim=True) | |
| output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
| dim=0, keepdim=True) | |
| input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
| output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
| def _tokenize_fn(strings: Sequence[str], | |
| tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
| """Tokenize a list of strings.""" | |
| tokenized_list = [ | |
| tokenizer( | |
| text, | |
| return_tensors="pt", | |
| padding="longest", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ) for text in strings | |
| ] | |
| input_ids = labels = [ | |
| tokenized.input_ids[0] for tokenized in tokenized_list | |
| ] | |
| input_ids_lens = labels_lens = [ | |
| tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() | |
| for tokenized in tokenized_list | |
| ] | |
| return dict( | |
| input_ids=input_ids, | |
| labels=labels, | |
| input_ids_lens=input_ids_lens, | |
| labels_lens=labels_lens, | |
| ) | |
| def _mask_targets(target, tokenized_lens, speakers): | |
| # cur_idx = 0 | |
| cur_idx = tokenized_lens[0] | |
| tokenized_lens = tokenized_lens[1:] | |
| target[:cur_idx] = IGNORE_INDEX | |
| for tokenized_len, speaker in zip(tokenized_lens, speakers): | |
| if speaker == "human": | |
| target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX | |
| cur_idx += tokenized_len | |
| def _add_speaker_and_signal(header, source, get_conversation=True): | |
| """Add speaker and start/end signal on each round.""" | |
| BEGIN_SIGNAL = "### " | |
| END_SIGNAL = "\n" | |
| conversation = header | |
| for sentence in source: | |
| from_str = sentence["from"] | |
| if from_str.lower() == "human": | |
| from_str = conversation_lib.default_conversation.roles[0] | |
| elif from_str.lower() == "gpt": | |
| from_str = conversation_lib.default_conversation.roles[1] | |
| else: | |
| from_str = 'unknown' | |
| sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + | |
| sentence["value"] + END_SIGNAL) | |
| if get_conversation: | |
| conversation += sentence["value"] | |
| conversation += BEGIN_SIGNAL | |
| return conversation | |
| def preprocess_multimodal( | |
| sources: Sequence[str], | |
| data_args: DataArguments | |
| ) -> Dict: | |
| is_multimodal = data_args.is_multimodal | |
| if not is_multimodal: | |
| return sources | |
| for source in sources: | |
| for sentence in source: | |
| if DEFAULT_IMAGE_TOKEN in sentence['value']: | |
| sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() | |
| sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] | |
| sentence['value'] = sentence['value'].strip() | |
| if "mmtag" in conversation_lib.default_conversation.version: | |
| sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>') | |
| replace_token = DEFAULT_IMAGE_TOKEN | |
| if data_args.mm_use_im_start_end: | |
| replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
| sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
| return sources | |
| def preprocess_llama_2( | |
| sources, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| has_image: bool = False | |
| ) -> Dict: | |
| conv = conversation_lib.default_conversation.copy() | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| # Apply prompt templates | |
| conversations = [] | |
| for i, source in enumerate(sources): | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| # Skip the first one if it is not from human | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| conversations.append(conv.get_prompt()) | |
| # Tokenize conversations | |
| if has_image: | |
| input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
| else: | |
| input_ids = tokenizer( | |
| conversations, | |
| return_tensors="pt", | |
| padding="longest", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ).input_ids | |
| targets = input_ids.clone() | |
| assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 | |
| # Mask targets | |
| sep = "[/INST] " | |
| for conversation, target in zip(conversations, targets): | |
| total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
| rounds = conversation.split(conv.sep2) | |
| cur_len = 1 | |
| target[:cur_len] = IGNORE_INDEX | |
| for i, rou in enumerate(rounds): | |
| if rou == "": | |
| break | |
| parts = rou.split(sep) | |
| if len(parts) != 2: | |
| break | |
| parts[0] += sep | |
| if has_image: | |
| round_len = len(tokenizer_image_token(rou, tokenizer)) | |
| instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
| else: | |
| round_len = len(tokenizer(rou).input_ids) | |
| instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
| target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
| cur_len += round_len | |
| target[cur_len:] = IGNORE_INDEX | |
| if cur_len < tokenizer.model_max_length: | |
| if cur_len != total_len: | |
| target[:] = IGNORE_INDEX | |
| print( | |
| f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
| f" (ignored)" | |
| ) | |
| return dict( | |
| input_ids=input_ids, | |
| labels=targets, | |
| ) | |
| def preprocess_v1( | |
| sources, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| has_image: bool = False | |
| ) -> Dict: | |
| conv = conversation_lib.default_conversation.copy() | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| # Apply prompt templates | |
| conversations = [] | |
| for i, source in enumerate(sources): | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| # Skip the first one if it is not from human | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| conversations.append(conv.get_prompt()) | |
| # Tokenize conversations | |
| if has_image: | |
| input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
| else: | |
| input_ids = tokenizer( | |
| conversations, | |
| return_tensors="pt", | |
| padding="longest", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ).input_ids | |
| targets = input_ids.clone() | |
| assert conv.sep_style == conversation_lib.SeparatorStyle.TWO | |
| # Mask targets | |
| sep = conv.sep + conv.roles[1] + ": " | |
| for conversation, target in zip(conversations, targets): | |
| total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
| rounds = conversation.split(conv.sep2) | |
| cur_len = 1 | |
| target[:cur_len] = IGNORE_INDEX | |
| for i, rou in enumerate(rounds): | |
| if rou == "": | |
| break | |
| parts = rou.split(sep) | |
| if len(parts) != 2: | |
| break | |
| parts[0] += sep | |
| if has_image: | |
| round_len = len(tokenizer_image_token(rou, tokenizer)) | |
| instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
| else: | |
| round_len = len(tokenizer(rou).input_ids) | |
| instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
| target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
| cur_len += round_len | |
| target[cur_len:] = IGNORE_INDEX | |
| if cur_len < tokenizer.model_max_length: | |
| if cur_len != total_len: | |
| target[:] = IGNORE_INDEX | |
| print( | |
| f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
| f" (ignored)" | |
| ) | |
| return dict( | |
| input_ids=input_ids, | |
| labels=targets, | |
| ) | |
| def preprocess_mpt( | |
| sources, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| ) -> Dict: | |
| conv = conversation_lib.default_conversation.copy() | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| # Apply prompt templates | |
| conversations = [] | |
| for i, source in enumerate(sources): | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| # Skip the first one if it is not from human | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| conversations.append(conv.get_prompt()) | |
| # Tokenize conversations | |
| input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
| targets = input_ids.clone() | |
| assert conv.sep_style == conversation_lib.SeparatorStyle.MPT | |
| # Mask targets | |
| sep = conv.sep + conv.roles[1] | |
| for conversation, target in zip(conversations, targets): | |
| total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
| rounds = conversation.split(conv.sep) | |
| re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt | |
| for conv_idx in range(3, len(rounds), 2): | |
| re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt | |
| cur_len = 0 | |
| target[:cur_len] = IGNORE_INDEX | |
| for i, rou in enumerate(re_rounds): | |
| if rou == "": | |
| break | |
| parts = rou.split(sep) | |
| if len(parts) != 2: | |
| break | |
| parts[0] += sep | |
| round_len = len(tokenizer_image_token(rou, tokenizer)) + len(tokenizer_image_token(conv.sep, tokenizer)) | |
| instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) | |
| target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
| cur_len += round_len | |
| target[cur_len:] = IGNORE_INDEX | |
| if cur_len < tokenizer.model_max_length: | |
| if cur_len != total_len: | |
| target[:] = IGNORE_INDEX | |
| print( | |
| f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
| f" (ignored)" | |
| ) | |
| return dict( | |
| input_ids=input_ids, | |
| labels=targets, | |
| ) | |
| def preprocess_plain( | |
| sources: Sequence[str], | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| ) -> Dict: | |
| # add end signal and concatenate together | |
| conversations = [] | |
| for source in sources: | |
| assert len(source) == 2 | |
| assert DEFAULT_IMAGE_TOKEN in source[0]['value'] | |
| source[0]['value'] = DEFAULT_IMAGE_TOKEN | |
| conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep | |
| conversations.append(conversation) | |
| # tokenize conversations | |
| input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] | |
| targets = copy.deepcopy(input_ids) | |
| for target, source in zip(targets, sources): | |
| tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) | |
| target[:tokenized_len] = IGNORE_INDEX | |
| return dict(input_ids=input_ids, labels=targets) | |
| def preprocess( | |
| sources: Sequence[str], | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| has_image: bool = False | |
| ) -> Dict: | |
| """ | |
| Given a list of sources, each is a conversation list. This transform: | |
| 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
| 2. Concatenate conversations together; | |
| 3. Tokenize the concatenated conversation; | |
| 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
| """ | |
| if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: | |
| return preprocess_plain(sources, tokenizer) | |
| if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: | |
| return preprocess_llama_2(sources, tokenizer, has_image=has_image) | |
| if conversation_lib.default_conversation.version.startswith("v1"): | |
| return preprocess_v1(sources, tokenizer, has_image=has_image) | |
| if conversation_lib.default_conversation.version == "mpt": | |
| return preprocess_mpt(sources, tokenizer) | |
| # add end signal and concatenate together | |
| conversations = [] | |
| for source in sources: | |
| header = f"{conversation_lib.default_conversation.system}\n\n" | |
| conversation = _add_speaker_and_signal(header, source) | |
| conversations.append(conversation) | |
| # tokenize conversations | |
| def get_tokenize_len(prompts): | |
| return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] | |
| if has_image: | |
| input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] | |
| else: | |
| conversations_tokenized = _tokenize_fn(conversations, tokenizer) | |
| input_ids = conversations_tokenized["input_ids"] | |
| targets = copy.deepcopy(input_ids) | |
| for target, source in zip(targets, sources): | |
| if has_image: | |
| tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) | |
| else: | |
| tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] | |
| speakers = [sentence["from"] for sentence in source] | |
| _mask_targets(target, tokenized_lens, speakers) | |
| return dict(input_ids=input_ids, labels=targets) | |
| class LazySupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__(self, data_path: str, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| data_args: DataArguments): | |
| super(LazySupervisedDataset, self).__init__() | |
| list_data_dict = json.load(open(data_path, "r")) | |
| rank0_print("Formatting inputs...Skip in lazy mode") | |
| self.tokenizer = tokenizer | |
| self.list_data_dict = list_data_dict | |
| self.data_args = data_args | |
| def __len__(self): | |
| return len(self.list_data_dict) | |
| def lengths(self): | |
| length_list = [] | |
| for sample in self.list_data_dict: | |
| img_tokens = 128 if 'image' in sample else 0 | |
| length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) | |
| return length_list | |
| def modality_lengths(self): | |
| length_list = [] | |
| for sample in self.list_data_dict: | |
| cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) | |
| cur_len = cur_len if 'image' in sample else -cur_len | |
| length_list.append(cur_len) | |
| return length_list | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| sources = self.list_data_dict[i] | |
| if isinstance(i, int): | |
| sources = [sources] | |
| assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
| if 'image' in sources[0]: | |
| image_file = self.list_data_dict[i]['image'] | |
| image_folder = self.data_args.image_folder | |
| processor = self.data_args.image_processor | |
| image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') | |
| if self.data_args.image_aspect_ratio == 'pad': | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) | |
| image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
| else: | |
| image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
| sources = preprocess_multimodal( | |
| copy.deepcopy([e["conversations"] for e in sources]), | |
| self.data_args) | |
| else: | |
| sources = copy.deepcopy([e["conversations"] for e in sources]) | |
| data_dict = preprocess( | |
| sources, | |
| self.tokenizer, | |
| has_image=('image' in self.list_data_dict[i])) | |
| if isinstance(i, int): | |
| data_dict = dict(input_ids=data_dict["input_ids"][0], | |
| labels=data_dict["labels"][0]) | |
| # image exist in the data | |
| if 'image' in self.list_data_dict[i]: | |
| data_dict['image'] = image | |
| elif self.data_args.is_multimodal: | |
| # image does not exist in the data, but the model is multimodal | |
| crop_size = self.data_args.image_processor.crop_size | |
| data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) | |
| return data_dict | |
| class DataCollatorForSupervisedDataset(object): | |
| """Collate examples for supervised fine-tuning.""" | |
| tokenizer: transformers.PreTrainedTokenizer | |
| def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
| input_ids, labels = tuple([instance[key] for instance in instances] | |
| for key in ("input_ids", "labels")) | |
| input_ids = torch.nn.utils.rnn.pad_sequence( | |
| input_ids, | |
| batch_first=True, | |
| padding_value=self.tokenizer.pad_token_id) | |
| labels = torch.nn.utils.rnn.pad_sequence(labels, | |
| batch_first=True, | |
| padding_value=IGNORE_INDEX) | |
| input_ids = input_ids[:, :self.tokenizer.model_max_length] | |
| labels = labels[:, :self.tokenizer.model_max_length] | |
| batch = dict( | |
| input_ids=input_ids, | |
| labels=labels, | |
| attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
| ) | |
| if 'image' in instances[0]: | |
| images = [instance['image'] for instance in instances] | |
| if all(x is not None and x.shape == images[0].shape for x in images): | |
| batch['images'] = torch.stack(images) | |
| else: | |
| batch['images'] = images | |
| return batch | |
| def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, | |
| data_args) -> Dict: | |
| """Make dataset and collator for supervised fine-tuning.""" | |
| train_dataset = LazySupervisedDataset(tokenizer=tokenizer, | |
| data_path=data_args.data_path, | |
| data_args=data_args) | |
| data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
| return dict(train_dataset=train_dataset, | |
| eval_dataset=None, | |
| data_collator=data_collator) | |
| def train(): | |
| global local_rank | |
| parser = transformers.HfArgumentParser( | |
| (ModelArguments, DataArguments, TrainingArguments)) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| local_rank = training_args.local_rank | |
| compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) | |
| bnb_model_from_pretrained_args = {} | |
| if training_args.bits in [4, 8]: | |
| from transformers import BitsAndBytesConfig | |
| bnb_model_from_pretrained_args.update(dict( | |
| device_map={"": training_args.device}, | |
| load_in_4bit=training_args.bits == 4, | |
| load_in_8bit=training_args.bits == 8, | |
| quantization_config=BitsAndBytesConfig( | |
| load_in_4bit=training_args.bits == 4, | |
| load_in_8bit=training_args.bits == 8, | |
| llm_int8_skip_modules=["mm_projector"], | |
| llm_int8_threshold=6.0, | |
| llm_int8_has_fp16_weight=False, | |
| bnb_4bit_compute_dtype=compute_dtype, | |
| bnb_4bit_use_double_quant=training_args.double_quant, | |
| bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} | |
| ) | |
| )) | |
| if model_args.vision_tower is not None: | |
| if 'mpt' in model_args.model_name_or_path: | |
| config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) | |
| config.attn_config['attn_impl'] = training_args.mpt_attn_impl | |
| model = LlavaMPTForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| cache_dir=training_args.cache_dir, | |
| **bnb_model_from_pretrained_args | |
| ) | |
| else: | |
| model = LlavaLlamaForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=training_args.cache_dir, | |
| **bnb_model_from_pretrained_args | |
| ) | |
| else: | |
| model = transformers.LlamaForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=training_args.cache_dir, | |
| **bnb_model_from_pretrained_args | |
| ) | |
| model.config.use_cache = False | |
| if model_args.freeze_backbone: | |
| model.model.requires_grad_(False) | |
| if training_args.bits in [4, 8]: | |
| from peft import prepare_model_for_kbit_training | |
| model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) | |
| model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) | |
| if training_args.gradient_checkpointing: | |
| if hasattr(model, "enable_input_require_grads"): | |
| model.enable_input_require_grads() | |
| else: | |
| def make_inputs_require_grad(module, input, output): | |
| output.requires_grad_(True) | |
| model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
| if training_args.lora_enable: | |
| from peft import LoraConfig, get_peft_model | |
| lora_config = LoraConfig( | |
| r=training_args.lora_r, | |
| lora_alpha=training_args.lora_alpha, | |
| target_modules=find_all_linear_names(model), | |
| lora_dropout=training_args.lora_dropout, | |
| bias=training_args.lora_bias, | |
| task_type="CAUSAL_LM", | |
| ) | |
| if training_args.bits == 16: | |
| if training_args.bf16: | |
| model.to(torch.bfloat16) | |
| if training_args.fp16: | |
| model.to(torch.float16) | |
| rank0_print("Adding LoRA adapters...") | |
| model = get_peft_model(model, lora_config) | |
| if 'mpt' in model_args.model_name_or_path: | |
| tokenizer = transformers.AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=training_args.cache_dir, | |
| model_max_length=training_args.model_max_length, | |
| padding_side="right" | |
| ) | |
| else: | |
| tokenizer = transformers.AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=training_args.cache_dir, | |
| model_max_length=training_args.model_max_length, | |
| padding_side="right", | |
| use_fast=False, | |
| ) | |
| if model_args.version == "v0": | |
| if tokenizer.pad_token is None: | |
| smart_tokenizer_and_embedding_resize( | |
| special_tokens_dict=dict(pad_token="[PAD]"), | |
| tokenizer=tokenizer, | |
| model=model, | |
| ) | |
| elif model_args.version == "v0.5": | |
| tokenizer.pad_token = tokenizer.unk_token | |
| else: | |
| tokenizer.pad_token = tokenizer.unk_token | |
| if model_args.version in conversation_lib.conv_templates: | |
| conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] | |
| else: | |
| conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] | |
| if model_args.vision_tower is not None: | |
| model.get_model().initialize_vision_modules( | |
| model_args=model_args, | |
| fsdp=training_args.fsdp | |
| ) | |
| vision_tower = model.get_vision_tower() | |
| vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) | |
| data_args.image_processor = vision_tower.image_processor | |
| data_args.is_multimodal = True | |
| model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
| model.config.tokenizer_padding_side = tokenizer.padding_side | |
| model.config.tokenizer_model_max_length = tokenizer.model_max_length | |
| model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter | |
| if model_args.tune_mm_mlp_adapter: | |
| model.requires_grad_(False) | |
| for p in model.get_model().mm_projector.parameters(): | |
| p.requires_grad = True | |
| model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
| if training_args.freeze_mm_mlp_adapter: | |
| for p in model.get_model().mm_projector.parameters(): | |
| p.requires_grad = False | |
| if training_args.bits in [4, 8]: | |
| model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) | |
| model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end | |
| model.config.mm_projector_lr = training_args.mm_projector_lr | |
| training_args.use_im_start_end = model_args.mm_use_im_start_end | |
| model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token | |
| model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) | |
| if training_args.bits in [4, 8]: | |
| from peft.tuners.lora import LoraLayer | |
| for name, module in model.named_modules(): | |
| if isinstance(module, LoraLayer): | |
| if training_args.bf16: | |
| module = module.to(torch.bfloat16) | |
| if 'norm' in name: | |
| module = module.to(torch.float32) | |
| if 'lm_head' in name or 'embed_tokens' in name: | |
| if hasattr(module, 'weight'): | |
| if training_args.bf16 and module.weight.dtype == torch.float32: | |
| module = module.to(torch.bfloat16) | |
| data_module = make_supervised_data_module(tokenizer=tokenizer, | |
| data_args=data_args) | |
| trainer = LLaVATrainer(model=model, | |
| tokenizer=tokenizer, | |
| args=training_args, | |
| **data_module) | |
| if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
| trainer.train(resume_from_checkpoint=True) | |
| else: | |
| trainer.train() | |
| trainer.save_state() | |
| model.config.use_cache = True | |
| if training_args.lora_enable: | |
| state_dict = get_peft_state_maybe_zero_3( | |
| model.named_parameters(), training_args.lora_bias | |
| ) | |
| non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( | |
| model.named_parameters() | |
| ) | |
| if training_args.local_rank == 0 or training_args.local_rank == -1: | |
| model.config.save_pretrained(training_args.output_dir) | |
| model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
| torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) | |
| else: | |
| safe_save_model_for_hf_trainer(trainer=trainer, | |
| output_dir=training_args.output_dir) | |
| if __name__ == "__main__": | |
| train() | |