Spaces:
Runtime error
Runtime error
Commit
·
156829e
1
Parent(s):
f7c2b84
Use xtts-streaming for generation
Browse files
app.py
CHANGED
|
@@ -3,16 +3,17 @@ import io, os, stat
|
|
| 3 |
import subprocess
|
| 4 |
import random
|
| 5 |
from zipfile import ZipFile
|
| 6 |
-
import uuid
|
| 7 |
import time
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
|
|
|
| 10 |
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
| 11 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 12 |
|
| 13 |
# langid is used to detect language for longer text
|
| 14 |
# Most users expect text to be their own language, there is checkbox to disable it
|
| 15 |
-
import langid
|
| 16 |
import base64
|
| 17 |
import csv
|
| 18 |
from io import StringIO
|
|
@@ -39,12 +40,13 @@ repo_id = "coqui/xtts"
|
|
| 39 |
print("Export newer ffmpeg binary for denoise filter")
|
| 40 |
ZipFile("ffmpeg.zip").extractall()
|
| 41 |
print("Make ffmpeg binary executable")
|
| 42 |
-
st = os.stat(
|
| 43 |
-
os.chmod(
|
| 44 |
|
| 45 |
# This will trigger downloading model
|
| 46 |
print("Downloading if not downloaded Coqui XTTS V1.1")
|
| 47 |
from TTS.utils.manage import ModelManager
|
|
|
|
| 48 |
model_name = "tts_models/multilingual/multi-dataset/xtts_v1.1"
|
| 49 |
ModelManager().download_model(model_name)
|
| 50 |
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
|
|
@@ -63,156 +65,188 @@ model.load_checkpoint(
|
|
| 63 |
checkpoint_path=os.path.join(model_path, "model.pth"),
|
| 64 |
vocab_path=os.path.join(model_path, "vocab.json"),
|
| 65 |
eval=True,
|
| 66 |
-
use_deepspeed=True
|
| 67 |
)
|
| 68 |
model.cuda()
|
| 69 |
|
| 70 |
# This is for debugging purposes only
|
| 71 |
-
DEVICE_ASSERT_DETECTED=0
|
| 72 |
-
DEVICE_ASSERT_PROMPT=None
|
| 73 |
-
DEVICE_ASSERT_LANG=None
|
| 74 |
|
| 75 |
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
#supported_languages=["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn"]
|
| 78 |
-
supported_languages=config.languages
|
| 79 |
|
| 80 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
if agree == True:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
if language not in supported_languages:
|
| 85 |
-
gr.Warning(
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
return (
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
-
language_predicted=langid.classify(prompt)[
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# tts expects chinese as zh-cn
|
| 97 |
-
if language_predicted == "zh":
|
| 98 |
-
#we use zh-cn
|
| 99 |
language_predicted = "zh-cn"
|
| 100 |
|
| 101 |
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
| 102 |
|
| 103 |
# After text character length 15 trigger language detection
|
| 104 |
-
if len(prompt)>15:
|
| 105 |
# allow any language for short text as some may be common
|
| 106 |
# If user unchecks language autodetection it will not trigger
|
| 107 |
# You may remove this completely for own use
|
| 108 |
if language_predicted != language and not no_lang_auto_detect:
|
| 109 |
-
#Please duplicate and remove this check if you really want this
|
| 110 |
-
#Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
| 111 |
-
gr.Warning(
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
return (
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
if use_mic == True:
|
| 122 |
if mic_file_path is not None:
|
| 123 |
-
|
| 124 |
else:
|
| 125 |
-
gr.Warning(
|
|
|
|
|
|
|
| 126 |
return (
|
| 127 |
None,
|
| 128 |
None,
|
| 129 |
None,
|
| 130 |
None,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
else:
|
| 134 |
-
speaker_wav=audio_file_pth
|
| 135 |
|
| 136 |
-
|
| 137 |
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
| 138 |
# This is fast filtering not perfect
|
| 139 |
|
| 140 |
# Apply all on demand
|
| 141 |
-
lowpassfilter=denoise=trim=loudness=True
|
| 142 |
-
|
| 143 |
if lowpassfilter:
|
| 144 |
-
lowpass_highpass="lowpass=8000,highpass=75,"
|
| 145 |
else:
|
| 146 |
-
lowpass_highpass=""
|
| 147 |
|
| 148 |
if trim:
|
| 149 |
# better to remove silence in beginning and end for microphone
|
| 150 |
-
trim_silence="areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
|
| 151 |
else:
|
| 152 |
-
trim_silence=""
|
| 153 |
-
|
| 154 |
-
if
|
| 155 |
try:
|
| 156 |
-
out_filename =
|
| 157 |
-
|
| 158 |
-
#
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
print("Filtered microphone input")
|
| 164 |
except subprocess.CalledProcessError:
|
| 165 |
# There was an error - command exited with non-zero code
|
| 166 |
print("Error: failed filtering, use original microphone input")
|
| 167 |
else:
|
| 168 |
-
speaker_wav=speaker_wav
|
| 169 |
|
| 170 |
-
if len(prompt)<2:
|
| 171 |
gr.Warning("Please give a longer prompt text")
|
| 172 |
return (
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
if len(prompt)>200:
|
| 179 |
-
gr.Warning(
|
|
|
|
|
|
|
| 180 |
return (
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
global DEVICE_ASSERT_DETECTED
|
| 187 |
if DEVICE_ASSERT_DETECTED:
|
| 188 |
global DEVICE_ASSERT_PROMPT
|
| 189 |
global DEVICE_ASSERT_LANG
|
| 190 |
-
#It will likely never come here as we restart space on first unrecoverable error now
|
| 191 |
-
print(
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
| 198 |
try:
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
except Exception as e:
|
| 201 |
print("Speaker encoding error", str(e))
|
| 202 |
-
gr.Warning(
|
|
|
|
|
|
|
| 203 |
return (
|
| 204 |
None,
|
| 205 |
None,
|
| 206 |
None,
|
| 207 |
None,
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
|
| 211 |
latent_calculation_time = time.time() - t_latent
|
| 212 |
-
#metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
| 213 |
|
| 214 |
wav_chunks = []
|
| 215 |
-
|
|
|
|
| 216 |
print("I: Generating new audio...")
|
| 217 |
t0 = time.time()
|
| 218 |
out = model.inference(
|
|
@@ -230,29 +264,78 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
| 230 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 231 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 232 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
if "device-side assert" in str(e):
|
| 235 |
# cannot do anything on cuda device side error, need tor estart
|
| 236 |
-
print(
|
|
|
|
|
|
|
|
|
|
| 237 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 238 |
print("Cuda device-assert Runtime encountered need restart")
|
| 239 |
if not DEVICE_ASSERT_DETECTED:
|
| 240 |
-
DEVICE_ASSERT_DETECTED=1
|
| 241 |
-
DEVICE_ASSERT_PROMPT=prompt
|
| 242 |
-
DEVICE_ASSERT_LANG=language
|
| 243 |
-
|
| 244 |
# just before restarting save what caused the issue so we can handle it in future
|
| 245 |
# Uploading Error data only happens for unrecovarable error
|
| 246 |
-
error_time = datetime.datetime.now().strftime(
|
| 247 |
-
error_data = [
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
print(error_data)
|
| 250 |
print(speaker_wav)
|
| 251 |
write_io = StringIO()
|
| 252 |
csv.writer(write_io).writerows([error_data])
|
| 253 |
-
csv_upload= write_io.getvalue().encode()
|
| 254 |
-
|
| 255 |
-
filename =
|
| 256 |
print("Writing error csv")
|
| 257 |
error_api = HfApi()
|
| 258 |
error_api.upload_file(
|
|
@@ -261,10 +344,12 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
| 261 |
repo_id="coqui/xtts-flagged-dataset",
|
| 262 |
repo_type="dataset",
|
| 263 |
)
|
| 264 |
-
|
| 265 |
-
#speaker_wav
|
| 266 |
print("Writing error reference audio")
|
| 267 |
-
speaker_filename =
|
|
|
|
|
|
|
| 268 |
error_api = HfApi()
|
| 269 |
error_api.upload_file(
|
| 270 |
path_or_fileobj=speaker_wav,
|
|
@@ -273,21 +358,23 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
| 273 |
repo_type="dataset",
|
| 274 |
)
|
| 275 |
|
| 276 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
| 277 |
api.restart_space(repo_id=repo_id)
|
| 278 |
else:
|
| 279 |
if "Failed to decode" in str(e):
|
| 280 |
print("Speaker encoding error", str(e))
|
| 281 |
-
gr.Warning(
|
|
|
|
|
|
|
| 282 |
else:
|
| 283 |
print("RuntimeError: non device-side assert error:", str(e))
|
| 284 |
gr.Warning("Something unexpected happened please retry again.")
|
| 285 |
return (
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
return (
|
| 292 |
gr.make_waveform(
|
| 293 |
audio="output.wav",
|
|
@@ -299,11 +386,11 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
| 299 |
else:
|
| 300 |
gr.Warning("Please accept the Terms & Condition!")
|
| 301 |
return (
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
|
| 308 |
|
| 309 |
title = "Coqui🐸 XTTS"
|
|
@@ -351,7 +438,6 @@ examples = [
|
|
| 351 |
False,
|
| 352 |
False,
|
| 353 |
True,
|
| 354 |
-
|
| 355 |
],
|
| 356 |
[
|
| 357 |
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image",
|
|
@@ -408,7 +494,7 @@ examples = [
|
|
| 408 |
"it",
|
| 409 |
"examples/female.wav",
|
| 410 |
None,
|
| 411 |
-
|
| 412 |
False,
|
| 413 |
False,
|
| 414 |
True,
|
|
@@ -428,7 +514,7 @@ examples = [
|
|
| 428 |
"ru",
|
| 429 |
"examples/female.wav",
|
| 430 |
None,
|
| 431 |
-
|
| 432 |
False,
|
| 433 |
False,
|
| 434 |
True,
|
|
@@ -438,7 +524,7 @@ examples = [
|
|
| 438 |
"nl",
|
| 439 |
"examples/male.wav",
|
| 440 |
None,
|
| 441 |
-
|
| 442 |
False,
|
| 443 |
False,
|
| 444 |
True,
|
|
@@ -448,7 +534,7 @@ examples = [
|
|
| 448 |
"cs",
|
| 449 |
"examples/female.wav",
|
| 450 |
None,
|
| 451 |
-
|
| 452 |
False,
|
| 453 |
False,
|
| 454 |
True,
|
|
@@ -458,7 +544,7 @@ examples = [
|
|
| 458 |
"zh-cn",
|
| 459 |
"examples/female.wav",
|
| 460 |
None,
|
| 461 |
-
|
| 462 |
False,
|
| 463 |
False,
|
| 464 |
True,
|
|
@@ -476,7 +562,6 @@ examples = [
|
|
| 476 |
]
|
| 477 |
|
| 478 |
|
| 479 |
-
|
| 480 |
gr.Interface(
|
| 481 |
fn=predict,
|
| 482 |
inputs=[
|
|
@@ -502,7 +587,7 @@ gr.Interface(
|
|
| 502 |
"cs",
|
| 503 |
"ar",
|
| 504 |
"zh-cn",
|
| 505 |
-
"ja"
|
| 506 |
],
|
| 507 |
max_choices=1,
|
| 508 |
value="en",
|
|
@@ -513,31 +598,36 @@ gr.Interface(
|
|
| 513 |
type="filepath",
|
| 514 |
value="examples/female.wav",
|
| 515 |
),
|
| 516 |
-
gr.Audio(
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
gr.Checkbox(
|
| 528 |
-
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
gr.Checkbox(
|
| 531 |
label="Agree",
|
| 532 |
value=False,
|
| 533 |
info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml",
|
| 534 |
),
|
| 535 |
-
|
| 536 |
-
|
| 537 |
],
|
| 538 |
outputs=[
|
| 539 |
gr.Video(label="Waveform Visual"),
|
| 540 |
-
gr.Audio(label="Synthesised Audio",autoplay=True),
|
| 541 |
gr.Text(label="Metrics"),
|
| 542 |
gr.Audio(label="Reference Audio Used"),
|
| 543 |
],
|
|
@@ -545,4 +635,5 @@ gr.Interface(
|
|
| 545 |
description=description,
|
| 546 |
article=article,
|
| 547 |
examples=examples,
|
| 548 |
-
).queue().launch(debug=True,show_api=True)
|
|
|
|
|
|
| 3 |
import subprocess
|
| 4 |
import random
|
| 5 |
from zipfile import ZipFile
|
| 6 |
+
import uuid
|
| 7 |
import time
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
| 10 |
+
|
| 11 |
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
| 12 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 13 |
|
| 14 |
# langid is used to detect language for longer text
|
| 15 |
# Most users expect text to be their own language, there is checkbox to disable it
|
| 16 |
+
import langid
|
| 17 |
import base64
|
| 18 |
import csv
|
| 19 |
from io import StringIO
|
|
|
|
| 40 |
print("Export newer ffmpeg binary for denoise filter")
|
| 41 |
ZipFile("ffmpeg.zip").extractall()
|
| 42 |
print("Make ffmpeg binary executable")
|
| 43 |
+
st = os.stat("ffmpeg")
|
| 44 |
+
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC)
|
| 45 |
|
| 46 |
# This will trigger downloading model
|
| 47 |
print("Downloading if not downloaded Coqui XTTS V1.1")
|
| 48 |
from TTS.utils.manage import ModelManager
|
| 49 |
+
|
| 50 |
model_name = "tts_models/multilingual/multi-dataset/xtts_v1.1"
|
| 51 |
ModelManager().download_model(model_name)
|
| 52 |
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
|
|
|
|
| 65 |
checkpoint_path=os.path.join(model_path, "model.pth"),
|
| 66 |
vocab_path=os.path.join(model_path, "vocab.json"),
|
| 67 |
eval=True,
|
| 68 |
+
use_deepspeed=True,
|
| 69 |
)
|
| 70 |
model.cuda()
|
| 71 |
|
| 72 |
# This is for debugging purposes only
|
| 73 |
+
DEVICE_ASSERT_DETECTED = 0
|
| 74 |
+
DEVICE_ASSERT_PROMPT = None
|
| 75 |
+
DEVICE_ASSERT_LANG = None
|
| 76 |
|
| 77 |
|
| 78 |
+
# supported_languages=["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn"]
|
| 79 |
+
supported_languages = config.languages
|
| 80 |
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
def predict(
|
| 83 |
+
prompt,
|
| 84 |
+
language,
|
| 85 |
+
audio_file_pth,
|
| 86 |
+
mic_file_path,
|
| 87 |
+
use_mic,
|
| 88 |
+
voice_cleanup,
|
| 89 |
+
no_lang_auto_detect,
|
| 90 |
+
agree,
|
| 91 |
+
):
|
| 92 |
if agree == True:
|
|
|
|
|
|
|
| 93 |
if language not in supported_languages:
|
| 94 |
+
gr.Warning(
|
| 95 |
+
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
return (
|
| 99 |
+
None,
|
| 100 |
+
None,
|
| 101 |
+
None,
|
| 102 |
+
None,
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
language_predicted = langid.classify(prompt)[
|
| 106 |
+
0
|
| 107 |
+
].strip() # strip need as there is space at end!
|
| 108 |
|
| 109 |
# tts expects chinese as zh-cn
|
| 110 |
+
if language_predicted == "zh":
|
| 111 |
+
# we use zh-cn
|
| 112 |
language_predicted = "zh-cn"
|
| 113 |
|
| 114 |
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
| 115 |
|
| 116 |
# After text character length 15 trigger language detection
|
| 117 |
+
if len(prompt) > 15:
|
| 118 |
# allow any language for short text as some may be common
|
| 119 |
# If user unchecks language autodetection it will not trigger
|
| 120 |
# You may remove this completely for own use
|
| 121 |
if language_predicted != language and not no_lang_auto_detect:
|
| 122 |
+
# Please duplicate and remove this check if you really want this
|
| 123 |
+
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
| 124 |
+
gr.Warning(
|
| 125 |
+
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
return (
|
| 129 |
+
None,
|
| 130 |
+
None,
|
| 131 |
+
None,
|
| 132 |
+
None,
|
| 133 |
+
)
|
| 134 |
|
|
|
|
| 135 |
if use_mic == True:
|
| 136 |
if mic_file_path is not None:
|
| 137 |
+
speaker_wav = mic_file_path
|
| 138 |
else:
|
| 139 |
+
gr.Warning(
|
| 140 |
+
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
| 141 |
+
)
|
| 142 |
return (
|
| 143 |
None,
|
| 144 |
None,
|
| 145 |
None,
|
| 146 |
None,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
else:
|
| 150 |
+
speaker_wav = audio_file_pth
|
| 151 |
|
|
|
|
| 152 |
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
| 153 |
# This is fast filtering not perfect
|
| 154 |
|
| 155 |
# Apply all on demand
|
| 156 |
+
lowpassfilter = denoise = trim = loudness = True
|
| 157 |
+
|
| 158 |
if lowpassfilter:
|
| 159 |
+
lowpass_highpass = "lowpass=8000,highpass=75,"
|
| 160 |
else:
|
| 161 |
+
lowpass_highpass = ""
|
| 162 |
|
| 163 |
if trim:
|
| 164 |
# better to remove silence in beginning and end for microphone
|
| 165 |
+
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
|
| 166 |
else:
|
| 167 |
+
trim_silence = ""
|
| 168 |
+
|
| 169 |
+
if voice_cleanup:
|
| 170 |
try:
|
| 171 |
+
out_filename = (
|
| 172 |
+
speaker_wav + str(uuid.uuid4()) + ".wav"
|
| 173 |
+
) # ffmpeg to know output format
|
| 174 |
+
|
| 175 |
+
# we will use newer ffmpeg as that has afftn denoise filter
|
| 176 |
+
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(
|
| 177 |
+
" "
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
command_result = subprocess.run(
|
| 181 |
+
[item for item in shell_command],
|
| 182 |
+
capture_output=False,
|
| 183 |
+
text=True,
|
| 184 |
+
check=True,
|
| 185 |
+
)
|
| 186 |
+
speaker_wav = out_filename
|
| 187 |
print("Filtered microphone input")
|
| 188 |
except subprocess.CalledProcessError:
|
| 189 |
# There was an error - command exited with non-zero code
|
| 190 |
print("Error: failed filtering, use original microphone input")
|
| 191 |
else:
|
| 192 |
+
speaker_wav = speaker_wav
|
| 193 |
|
| 194 |
+
if len(prompt) < 2:
|
| 195 |
gr.Warning("Please give a longer prompt text")
|
| 196 |
return (
|
| 197 |
+
None,
|
| 198 |
+
None,
|
| 199 |
+
None,
|
| 200 |
+
None,
|
| 201 |
+
)
|
| 202 |
+
if len(prompt) > 200:
|
| 203 |
+
gr.Warning(
|
| 204 |
+
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
| 205 |
+
)
|
| 206 |
return (
|
| 207 |
+
None,
|
| 208 |
+
None,
|
| 209 |
+
None,
|
| 210 |
+
None,
|
| 211 |
+
)
|
| 212 |
global DEVICE_ASSERT_DETECTED
|
| 213 |
if DEVICE_ASSERT_DETECTED:
|
| 214 |
global DEVICE_ASSERT_PROMPT
|
| 215 |
global DEVICE_ASSERT_LANG
|
| 216 |
+
# It will likely never come here as we restart space on first unrecoverable error now
|
| 217 |
+
print(
|
| 218 |
+
f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
try:
|
| 222 |
+
metrics_text = ""
|
| 223 |
+
t_latent = time.time()
|
| 224 |
+
|
| 225 |
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
| 226 |
try:
|
| 227 |
+
(
|
| 228 |
+
gpt_cond_latent,
|
| 229 |
+
diffusion_conditioning,
|
| 230 |
+
speaker_embedding,
|
| 231 |
+
) = model.get_conditioning_latents(audio_path=speaker_wav)
|
| 232 |
except Exception as e:
|
| 233 |
print("Speaker encoding error", str(e))
|
| 234 |
+
gr.Warning(
|
| 235 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
| 236 |
+
)
|
| 237 |
return (
|
| 238 |
None,
|
| 239 |
None,
|
| 240 |
None,
|
| 241 |
None,
|
| 242 |
+
)
|
| 243 |
+
|
|
|
|
| 244 |
latent_calculation_time = time.time() - t_latent
|
| 245 |
+
# metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
| 246 |
|
| 247 |
wav_chunks = []
|
| 248 |
+
## Direct mode
|
| 249 |
+
"""
|
| 250 |
print("I: Generating new audio...")
|
| 251 |
t0 = time.time()
|
| 252 |
out = model.inference(
|
|
|
|
| 264 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 265 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 266 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
print("I: Generating new audio in streaming mode...")
|
| 270 |
+
t0 = time.time()
|
| 271 |
+
chunks = model.inference_stream(
|
| 272 |
+
prompt,
|
| 273 |
+
language,
|
| 274 |
+
gpt_cond_latent,
|
| 275 |
+
speaker_embedding,
|
| 276 |
+
decoder="ne_hifigan",
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
first_chunk = True
|
| 280 |
+
for i, chunk in enumerate(chunks):
|
| 281 |
+
if first_chunk:
|
| 282 |
+
first_chunk_time = time.time() - t0
|
| 283 |
+
metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
|
| 284 |
+
first_chunk = False
|
| 285 |
+
wav_chunks.append(chunk)
|
| 286 |
+
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
| 287 |
+
inference_time = time.time() - t0
|
| 288 |
+
print(
|
| 289 |
+
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds"
|
| 290 |
+
)
|
| 291 |
+
metrics_text += (
|
| 292 |
+
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
wav = torch.cat(wav_chunks, dim=0)
|
| 296 |
+
print(wav.shape)
|
| 297 |
+
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000
|
| 298 |
+
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 299 |
+
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 300 |
+
|
| 301 |
+
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
| 302 |
+
|
| 303 |
+
except RuntimeError as e:
|
| 304 |
if "device-side assert" in str(e):
|
| 305 |
# cannot do anything on cuda device side error, need tor estart
|
| 306 |
+
print(
|
| 307 |
+
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 308 |
+
flush=True,
|
| 309 |
+
)
|
| 310 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 311 |
print("Cuda device-assert Runtime encountered need restart")
|
| 312 |
if not DEVICE_ASSERT_DETECTED:
|
| 313 |
+
DEVICE_ASSERT_DETECTED = 1
|
| 314 |
+
DEVICE_ASSERT_PROMPT = prompt
|
| 315 |
+
DEVICE_ASSERT_LANG = language
|
| 316 |
+
|
| 317 |
# just before restarting save what caused the issue so we can handle it in future
|
| 318 |
# Uploading Error data only happens for unrecovarable error
|
| 319 |
+
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 320 |
+
error_data = [
|
| 321 |
+
error_time,
|
| 322 |
+
prompt,
|
| 323 |
+
language,
|
| 324 |
+
audio_file_pth,
|
| 325 |
+
mic_file_path,
|
| 326 |
+
use_mic,
|
| 327 |
+
voice_cleanup,
|
| 328 |
+
no_lang_auto_detect,
|
| 329 |
+
agree,
|
| 330 |
+
]
|
| 331 |
+
error_data = [str(e) if type(e) != str else e for e in error_data]
|
| 332 |
print(error_data)
|
| 333 |
print(speaker_wav)
|
| 334 |
write_io = StringIO()
|
| 335 |
csv.writer(write_io).writerows([error_data])
|
| 336 |
+
csv_upload = write_io.getvalue().encode()
|
| 337 |
+
|
| 338 |
+
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
| 339 |
print("Writing error csv")
|
| 340 |
error_api = HfApi()
|
| 341 |
error_api.upload_file(
|
|
|
|
| 344 |
repo_id="coqui/xtts-flagged-dataset",
|
| 345 |
repo_type="dataset",
|
| 346 |
)
|
| 347 |
+
|
| 348 |
+
# speaker_wav
|
| 349 |
print("Writing error reference audio")
|
| 350 |
+
speaker_filename = (
|
| 351 |
+
error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 352 |
+
)
|
| 353 |
error_api = HfApi()
|
| 354 |
error_api.upload_file(
|
| 355 |
path_or_fileobj=speaker_wav,
|
|
|
|
| 358 |
repo_type="dataset",
|
| 359 |
)
|
| 360 |
|
| 361 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
| 362 |
api.restart_space(repo_id=repo_id)
|
| 363 |
else:
|
| 364 |
if "Failed to decode" in str(e):
|
| 365 |
print("Speaker encoding error", str(e))
|
| 366 |
+
gr.Warning(
|
| 367 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
| 368 |
+
)
|
| 369 |
else:
|
| 370 |
print("RuntimeError: non device-side assert error:", str(e))
|
| 371 |
gr.Warning("Something unexpected happened please retry again.")
|
| 372 |
return (
|
| 373 |
+
None,
|
| 374 |
+
None,
|
| 375 |
+
None,
|
| 376 |
+
None,
|
| 377 |
+
)
|
| 378 |
return (
|
| 379 |
gr.make_waveform(
|
| 380 |
audio="output.wav",
|
|
|
|
| 386 |
else:
|
| 387 |
gr.Warning("Please accept the Terms & Condition!")
|
| 388 |
return (
|
| 389 |
+
None,
|
| 390 |
+
None,
|
| 391 |
+
None,
|
| 392 |
+
None,
|
| 393 |
+
)
|
| 394 |
|
| 395 |
|
| 396 |
title = "Coqui🐸 XTTS"
|
|
|
|
| 438 |
False,
|
| 439 |
False,
|
| 440 |
True,
|
|
|
|
| 441 |
],
|
| 442 |
[
|
| 443 |
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image",
|
|
|
|
| 494 |
"it",
|
| 495 |
"examples/female.wav",
|
| 496 |
None,
|
| 497 |
+
False,
|
| 498 |
False,
|
| 499 |
False,
|
| 500 |
True,
|
|
|
|
| 514 |
"ru",
|
| 515 |
"examples/female.wav",
|
| 516 |
None,
|
| 517 |
+
False,
|
| 518 |
False,
|
| 519 |
False,
|
| 520 |
True,
|
|
|
|
| 524 |
"nl",
|
| 525 |
"examples/male.wav",
|
| 526 |
None,
|
| 527 |
+
False,
|
| 528 |
False,
|
| 529 |
False,
|
| 530 |
True,
|
|
|
|
| 534 |
"cs",
|
| 535 |
"examples/female.wav",
|
| 536 |
None,
|
| 537 |
+
False,
|
| 538 |
False,
|
| 539 |
False,
|
| 540 |
True,
|
|
|
|
| 544 |
"zh-cn",
|
| 545 |
"examples/female.wav",
|
| 546 |
None,
|
| 547 |
+
False,
|
| 548 |
False,
|
| 549 |
False,
|
| 550 |
True,
|
|
|
|
| 562 |
]
|
| 563 |
|
| 564 |
|
|
|
|
| 565 |
gr.Interface(
|
| 566 |
fn=predict,
|
| 567 |
inputs=[
|
|
|
|
| 587 |
"cs",
|
| 588 |
"ar",
|
| 589 |
"zh-cn",
|
| 590 |
+
"ja",
|
| 591 |
],
|
| 592 |
max_choices=1,
|
| 593 |
value="en",
|
|
|
|
| 598 |
type="filepath",
|
| 599 |
value="examples/female.wav",
|
| 600 |
),
|
| 601 |
+
gr.Audio(
|
| 602 |
+
source="microphone",
|
| 603 |
+
type="filepath",
|
| 604 |
+
info="Use your microphone to record audio",
|
| 605 |
+
label="Use Microphone for Reference",
|
| 606 |
+
),
|
| 607 |
+
gr.Checkbox(
|
| 608 |
+
label="Use Microphone",
|
| 609 |
+
value=False,
|
| 610 |
+
info="Notice: Microphone input may not work properly under traffic",
|
| 611 |
+
),
|
| 612 |
+
gr.Checkbox(
|
| 613 |
+
label="Cleanup Reference Voice",
|
| 614 |
+
value=False,
|
| 615 |
+
info="This check can improve output if your microphone or reference voice is noisy",
|
| 616 |
+
),
|
| 617 |
+
gr.Checkbox(
|
| 618 |
+
label="Do not use language auto-detect",
|
| 619 |
+
value=False,
|
| 620 |
+
info="Check to disable language auto-detection",
|
| 621 |
+
),
|
| 622 |
gr.Checkbox(
|
| 623 |
label="Agree",
|
| 624 |
value=False,
|
| 625 |
info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml",
|
| 626 |
),
|
|
|
|
|
|
|
| 627 |
],
|
| 628 |
outputs=[
|
| 629 |
gr.Video(label="Waveform Visual"),
|
| 630 |
+
gr.Audio(label="Synthesised Audio", autoplay=True),
|
| 631 |
gr.Text(label="Metrics"),
|
| 632 |
gr.Audio(label="Reference Audio Used"),
|
| 633 |
],
|
|
|
|
| 635 |
description=description,
|
| 636 |
article=article,
|
| 637 |
examples=examples,
|
| 638 |
+
).queue().launch(debug=True, show_api=True)
|
| 639 |
+
|