Update app.py
Browse files
app.py
CHANGED
|
@@ -1,342 +1,123 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
import gradio as gr
|
| 7 |
-
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
-
|
| 10 |
import indexing
|
| 11 |
import retrieval
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
# default_persist_directory = './chroma_HF/'
|
| 15 |
list_llm = [
|
| 16 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 17 |
"microsoft/Phi-3.5-mini-instruct",
|
| 18 |
"meta-llama/Llama-3.1-8B-Instruct",
|
| 19 |
"meta-llama/Llama-3.2-3B-Instruct",
|
| 20 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
| 21 |
-
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 22 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
| 23 |
-
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
| 24 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 25 |
"google/gemma-2-2b-it",
|
| 26 |
-
"google/gemma-2-9b-it",
|
| 27 |
-
"Qwen/Qwen2.5-1.5B-Instruct",
|
| 28 |
"Qwen/Qwen2.5-3B-Instruct",
|
| 29 |
-
"Qwen/Qwen2.5-7B-Instruct",
|
| 30 |
]
|
| 31 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 32 |
|
| 33 |
|
| 34 |
-
# Load environment file - HuggingFace API key
|
| 35 |
def retrieve_api():
|
| 36 |
-
|
| 37 |
-
_ = load_dotenv()
|
| 38 |
global huggingfacehub_api_token
|
| 39 |
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
|
| 40 |
|
| 41 |
|
| 42 |
-
|
| 43 |
-
def initialize_database(
|
| 44 |
-
list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()
|
| 45 |
-
):
|
| 46 |
-
"""Initialize database"""
|
| 47 |
-
|
| 48 |
-
# Create list of documents (when valid)
|
| 49 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
| 50 |
-
|
| 51 |
-
# Create collection_name for vector database
|
| 52 |
-
progress(0.1, desc="Creating collection name...")
|
| 53 |
collection_name = indexing.create_collection_name(list_file_path[0])
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
# Load document and create splits
|
| 57 |
-
doc_splits = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
|
| 58 |
-
|
| 59 |
-
# Create or load vector database
|
| 60 |
-
progress(0.5, desc="Generating vector database...")
|
| 61 |
-
|
| 62 |
-
# global vector_db
|
| 63 |
vector_db = indexing.create_db(doc_splits, collection_name)
|
|
|
|
| 64 |
|
| 65 |
-
return vector_db, collection_name, "Complete!"
|
| 66 |
|
| 67 |
-
|
| 68 |
-
# Initialize LLM
|
| 69 |
-
def initialize_llm(
|
| 70 |
-
llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
|
| 71 |
-
):
|
| 72 |
-
"""Initialize LLM"""
|
| 73 |
-
|
| 74 |
-
# print("llm_option",llm_option)
|
| 75 |
llm_name = list_llm[llm_option]
|
| 76 |
-
print("llm_name: ", llm_name)
|
| 77 |
qa_chain = retrieval.initialize_llmchain(
|
| 78 |
llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
|
| 79 |
)
|
| 80 |
return qa_chain, "Complete!"
|
| 81 |
|
| 82 |
|
| 83 |
-
# Chatbot conversation
|
| 84 |
def conversation(qa_chain, message, history):
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(
|
| 88 |
-
qa_chain, message, history
|
| 89 |
-
)
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
response_source3 = response_sources[2].page_content.strip()
|
| 95 |
-
# Langchain sources are zero-based
|
| 96 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
| 97 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
| 98 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
| 99 |
|
| 100 |
-
return (
|
| 101 |
-
qa_chain,
|
| 102 |
-
gr.update(value=""),
|
| 103 |
-
new_history,
|
| 104 |
-
response_source1,
|
| 105 |
-
response_source1_page,
|
| 106 |
-
response_source2,
|
| 107 |
-
response_source2_page,
|
| 108 |
-
response_source3,
|
| 109 |
-
response_source3_page,
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
SPACE_TITLE = """
|
| 114 |
-
<center><h2>PDF-based chatbot</center></h2>
|
| 115 |
-
<h3>Ask any questions about your PDF documents</h3>
|
| 116 |
-
"""
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
| 122 |
-
<br><b>Notes:</b> Updated space with more recent LLM models (Qwen 2.5, Llama 3.2, SmolLM2 series)
|
| 123 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
| 124 |
-
"""
|
| 125 |
|
| 126 |
|
| 127 |
-
# Gradio User Interface
|
| 128 |
def gradio_ui():
|
| 129 |
-
""
|
| 130 |
-
|
| 131 |
-
with gr.Blocks(theme="base") as demo:
|
| 132 |
vector_db = gr.State()
|
| 133 |
qa_chain = gr.State()
|
| 134 |
collection_name = gr.State()
|
| 135 |
|
| 136 |
-
gr.Markdown(
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
with gr.Tab("
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
)
|
| 183 |
-
with gr.Row():
|
| 184 |
-
db_btn = gr.Button("Generate vector database")
|
| 185 |
-
|
| 186 |
-
with gr.Tab("Step 3 - Initialize QA chain"):
|
| 187 |
-
with gr.Row():
|
| 188 |
-
llm_btn = gr.Radio(
|
| 189 |
-
list_llm_simple,
|
| 190 |
-
label="LLM models",
|
| 191 |
-
value=list_llm_simple[6],
|
| 192 |
-
type="index",
|
| 193 |
-
info="Choose your LLM model",
|
| 194 |
-
)
|
| 195 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
| 196 |
-
with gr.Row():
|
| 197 |
-
slider_temperature = gr.Slider(
|
| 198 |
-
minimum=0.01,
|
| 199 |
-
maximum=1.0,
|
| 200 |
-
value=0.7,
|
| 201 |
-
step=0.1,
|
| 202 |
-
label="Temperature",
|
| 203 |
-
info="Model temperature",
|
| 204 |
-
interactive=True,
|
| 205 |
-
)
|
| 206 |
-
with gr.Row():
|
| 207 |
-
slider_maxtokens = gr.Slider(
|
| 208 |
-
minimum=224,
|
| 209 |
-
maximum=4096,
|
| 210 |
-
value=1024,
|
| 211 |
-
step=32,
|
| 212 |
-
label="Max Tokens",
|
| 213 |
-
info="Model max tokens",
|
| 214 |
-
interactive=True,
|
| 215 |
-
)
|
| 216 |
-
with gr.Row():
|
| 217 |
-
slider_topk = gr.Slider(
|
| 218 |
-
minimum=1,
|
| 219 |
-
maximum=10,
|
| 220 |
-
value=3,
|
| 221 |
-
step=1,
|
| 222 |
-
label="top-k samples",
|
| 223 |
-
info="Model top-k samples",
|
| 224 |
-
interactive=True,
|
| 225 |
-
)
|
| 226 |
-
with gr.Row():
|
| 227 |
-
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
| 228 |
-
with gr.Row():
|
| 229 |
-
qachain_btn = gr.Button("Initialize Question Answering chain")
|
| 230 |
-
|
| 231 |
-
with gr.Tab("Step 4 - Chatbot"):
|
| 232 |
-
chatbot = gr.Chatbot(height=300, type="tuples")
|
| 233 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
| 234 |
-
with gr.Row():
|
| 235 |
-
doc_source1 = gr.Textbox(
|
| 236 |
-
label="Reference 1", lines=2, container=True, scale=20
|
| 237 |
-
)
|
| 238 |
-
source1_page = gr.Number(label="Page", scale=1)
|
| 239 |
-
with gr.Row():
|
| 240 |
-
doc_source2 = gr.Textbox(
|
| 241 |
-
label="Reference 2", lines=2, container=True, scale=20
|
| 242 |
-
)
|
| 243 |
-
source2_page = gr.Number(label="Page", scale=1)
|
| 244 |
-
with gr.Row():
|
| 245 |
-
doc_source3 = gr.Textbox(
|
| 246 |
-
label="Reference 3", lines=2, container=True, scale=20
|
| 247 |
-
)
|
| 248 |
-
source3_page = gr.Number(label="Page", scale=1)
|
| 249 |
-
with gr.Row():
|
| 250 |
-
msg = gr.Textbox(
|
| 251 |
-
placeholder="Type message (e.g. 'Can you summarize this document in one paragraph?')",
|
| 252 |
-
container=True,
|
| 253 |
-
)
|
| 254 |
-
with gr.Row():
|
| 255 |
-
submit_btn = gr.Button("Submit message")
|
| 256 |
-
clear_btn = gr.ClearButton(
|
| 257 |
-
components=[msg, chatbot], value="Clear conversation"
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
# Preprocessing events
|
| 261 |
-
db_btn.click(
|
| 262 |
-
initialize_database,
|
| 263 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
| 264 |
-
outputs=[vector_db, collection_name, db_progress],
|
| 265 |
-
)
|
| 266 |
-
qachain_btn.click(
|
| 267 |
-
initialize_llm,
|
| 268 |
-
inputs=[
|
| 269 |
-
llm_btn,
|
| 270 |
-
slider_temperature,
|
| 271 |
-
slider_maxtokens,
|
| 272 |
-
slider_topk,
|
| 273 |
-
vector_db,
|
| 274 |
-
],
|
| 275 |
-
outputs=[qa_chain, llm_progress],
|
| 276 |
-
).then(
|
| 277 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
| 278 |
-
inputs=None,
|
| 279 |
-
outputs=[
|
| 280 |
-
chatbot,
|
| 281 |
-
doc_source1,
|
| 282 |
-
source1_page,
|
| 283 |
-
doc_source2,
|
| 284 |
-
source2_page,
|
| 285 |
-
doc_source3,
|
| 286 |
-
source3_page,
|
| 287 |
-
],
|
| 288 |
-
queue=False,
|
| 289 |
-
)
|
| 290 |
-
|
| 291 |
-
# Chatbot events
|
| 292 |
-
msg.submit(
|
| 293 |
-
conversation,
|
| 294 |
-
inputs=[qa_chain, msg, chatbot],
|
| 295 |
-
outputs=[
|
| 296 |
-
qa_chain,
|
| 297 |
-
msg,
|
| 298 |
-
chatbot,
|
| 299 |
-
doc_source1,
|
| 300 |
-
source1_page,
|
| 301 |
-
doc_source2,
|
| 302 |
-
source2_page,
|
| 303 |
-
doc_source3,
|
| 304 |
-
source3_page,
|
| 305 |
-
],
|
| 306 |
-
queue=False,
|
| 307 |
-
)
|
| 308 |
-
submit_btn.click(
|
| 309 |
-
conversation,
|
| 310 |
-
inputs=[qa_chain, msg, chatbot],
|
| 311 |
-
outputs=[
|
| 312 |
-
qa_chain,
|
| 313 |
-
msg,
|
| 314 |
-
chatbot,
|
| 315 |
-
doc_source1,
|
| 316 |
-
source1_page,
|
| 317 |
-
doc_source2,
|
| 318 |
-
source2_page,
|
| 319 |
-
doc_source3,
|
| 320 |
-
source3_page,
|
| 321 |
-
],
|
| 322 |
-
queue=False,
|
| 323 |
-
)
|
| 324 |
-
clear_btn.click(
|
| 325 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
| 326 |
-
inputs=None,
|
| 327 |
-
outputs=[
|
| 328 |
-
chatbot,
|
| 329 |
-
doc_source1,
|
| 330 |
-
source1_page,
|
| 331 |
-
doc_source2,
|
| 332 |
-
source2_page,
|
| 333 |
-
doc_source3,
|
| 334 |
-
source3_page,
|
| 335 |
-
],
|
| 336 |
-
queue=False,
|
| 337 |
-
)
|
| 338 |
-
demo.queue().launch(debug=True)
|
| 339 |
-
|
| 340 |
|
| 341 |
if __name__ == "__main__":
|
| 342 |
retrieve_api()
|
|
|
|
| 1 |
+
# ✅ Enhanced GenAI Assistant with:
|
| 2 |
+
# - PDF/TXT support
|
| 3 |
+
# - Ask Anything + Challenge Me modes
|
| 4 |
+
# - Auto Summary (<=150 words)
|
| 5 |
+
# - Memory handling
|
| 6 |
+
# - Reference highlighting
|
| 7 |
+
# - Stunning UI (Gradio upgraded)
|
| 8 |
+
|
| 9 |
+
# --- FILE: app.py ---
|
| 10 |
|
| 11 |
import os
|
| 12 |
import gradio as gr
|
|
|
|
| 13 |
from dotenv import load_dotenv
|
|
|
|
| 14 |
import indexing
|
| 15 |
import retrieval
|
| 16 |
+
import utils
|
| 17 |
|
|
|
|
|
|
|
| 18 |
list_llm = [
|
| 19 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 20 |
"microsoft/Phi-3.5-mini-instruct",
|
| 21 |
"meta-llama/Llama-3.1-8B-Instruct",
|
| 22 |
"meta-llama/Llama-3.2-3B-Instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 24 |
"google/gemma-2-2b-it",
|
|
|
|
|
|
|
| 25 |
"Qwen/Qwen2.5-3B-Instruct",
|
|
|
|
| 26 |
]
|
| 27 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 28 |
|
| 29 |
|
|
|
|
| 30 |
def retrieve_api():
|
| 31 |
+
load_dotenv()
|
|
|
|
| 32 |
global huggingfacehub_api_token
|
| 33 |
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
|
| 34 |
|
| 35 |
|
| 36 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
|
|
|
|
|
|
|
| 38 |
collection_name = indexing.create_collection_name(list_file_path[0])
|
| 39 |
+
doc_splits, full_text = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
|
| 40 |
+
summary = utils.generate_summary(full_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
vector_db = indexing.create_db(doc_splits, collection_name)
|
| 42 |
+
return vector_db, collection_name, summary, "Complete!"
|
| 43 |
|
|
|
|
| 44 |
|
| 45 |
+
def initialize_llm(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
llm_name = list_llm[llm_option]
|
|
|
|
| 47 |
qa_chain = retrieval.initialize_llmchain(
|
| 48 |
llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
|
| 49 |
)
|
| 50 |
return qa_chain, "Complete!"
|
| 51 |
|
| 52 |
|
|
|
|
| 53 |
def conversation(qa_chain, message, history):
|
| 54 |
+
qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(qa_chain, message, history)
|
| 55 |
+
highlights = utils.extract_highlight_snippets(response_sources)
|
| 56 |
+
return qa_chain, gr.update(value=""), new_history, *highlights
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
def challenge_me(qa_chain):
|
| 60 |
+
questions = utils.generate_challenge_questions(qa_chain)
|
| 61 |
+
return questions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def evaluate_answers(qa_chain, questions, user_answers):
|
| 65 |
+
feedback = utils.evaluate_responses(qa_chain, questions, user_answers)
|
| 66 |
+
return feedback
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
|
|
|
| 69 |
def gradio_ui():
|
| 70 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), css="footer {display:none}") as demo:
|
|
|
|
|
|
|
| 71 |
vector_db = gr.State()
|
| 72 |
qa_chain = gr.State()
|
| 73 |
collection_name = gr.State()
|
| 74 |
|
| 75 |
+
gr.Markdown("""<h1 style='text-align:center;'>📚 GenAI Document Assistant</h1>
|
| 76 |
+
<h3 style='text-align:center;color:gray;'>Smart, interactive reading of research papers, legal docs, and more.</h3>""")
|
| 77 |
+
|
| 78 |
+
with gr.Tab("1️⃣ Upload Document"):
|
| 79 |
+
document = gr.File(label="Upload PDF or TXT", file_types=[".pdf", ".txt"], file_count="multiple")
|
| 80 |
+
slider_chunk_size = gr.Slider(100, 1000, value=600, step=20, label="Chunk Size")
|
| 81 |
+
slider_chunk_overlap = gr.Slider(10, 200, value=40, step=10, label="Chunk Overlap")
|
| 82 |
+
db_progress = gr.Textbox(label="Processing Status")
|
| 83 |
+
summary_box = gr.Textbox(label="Auto Summary (≤ 150 words)", lines=5)
|
| 84 |
+
db_btn = gr.Button("📥 Process Document")
|
| 85 |
+
|
| 86 |
+
with gr.Tab("2️⃣ QA Chain Initialization"):
|
| 87 |
+
llm_btn = gr.Radio(list_llm_simple, label="Select LLM", value=list_llm_simple[0], type="index")
|
| 88 |
+
slider_temperature = gr.Slider(0.01, 1.0, value=0.7, step=0.1, label="Temperature")
|
| 89 |
+
slider_maxtokens = gr.Slider(224, 4096, value=1024, step=32, label="Max Tokens")
|
| 90 |
+
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-K")
|
| 91 |
+
llm_progress = gr.Textbox(label="LLM Status")
|
| 92 |
+
qachain_btn = gr.Button("⚙️ Initialize QA Chain")
|
| 93 |
+
|
| 94 |
+
with gr.Tab("3️⃣ Ask Anything"):
|
| 95 |
+
chatbot = gr.Chatbot(height=300)
|
| 96 |
+
msg = gr.Textbox(placeholder="Ask a question from the document...")
|
| 97 |
+
submit_btn = gr.Button("💬 Ask")
|
| 98 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
| 99 |
+
ref1 = gr.Textbox(label="Reference 1")
|
| 100 |
+
ref2 = gr.Textbox(label="Reference 2")
|
| 101 |
+
ref3 = gr.Textbox(label="Reference 3")
|
| 102 |
+
|
| 103 |
+
with gr.Tab("4️⃣ Challenge Me"):
|
| 104 |
+
challenge_btn = gr.Button("🎯 Generate Questions")
|
| 105 |
+
q1 = gr.Textbox(label="Question 1")
|
| 106 |
+
a1 = gr.Textbox(label="Your Answer 1")
|
| 107 |
+
q2 = gr.Textbox(label="Question 2")
|
| 108 |
+
a2 = gr.Textbox(label="Your Answer 2")
|
| 109 |
+
q3 = gr.Textbox(label="Question 3")
|
| 110 |
+
a3 = gr.Textbox(label="Your Answer 3")
|
| 111 |
+
eval_btn = gr.Button("✅ Submit Answers")
|
| 112 |
+
feedback = gr.Textbox(label="Feedback", lines=5)
|
| 113 |
+
|
| 114 |
+
db_btn.click(initialize_database, [document, slider_chunk_size, slider_chunk_overlap], [vector_db, collection_name, summary_box, db_progress])
|
| 115 |
+
qachain_btn.click(initialize_llm, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress])
|
| 116 |
+
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot, ref1, ref2, ref3])
|
| 117 |
+
challenge_btn.click(challenge_me, [qa_chain], [q1, q2, q3])
|
| 118 |
+
eval_btn.click(evaluate_answers, [qa_chain, [q1, q2, q3], [a1, a2, a3]], [feedback])
|
| 119 |
+
|
| 120 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
| 123 |
retrieve_api()
|