Spaces:
Running
Running
File size: 30,066 Bytes
8d17137 915b4bd 1883df1 8d17137 915b4bd 1883df1 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 8d17137 915b4bd 1883df1 8d17137 915b4bd 8d17137 915b4bd 8d17137 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 a8d1e2d 1883df1 012d849 1883df1 2ce5ec1 1883df1 487db4d 2ce5ec1 1883df1 487db4d 1883df1 f2e3e16 1883df1 f2e3e16 1883df1 915b4bd 1883df1 a8d1e2d 1883df1 915b4bd 1883df1 915b4bd 1883df1 8d17137 915b4bd 8d17137 1883df1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import gradio as gr
import numpy as np
import librosa
import tensorflow as tf
from scipy.fftpack import dct
import os
import tempfile
import shutil
import subprocess
import re
import requests
from io import BytesIO
# DSCNN model configuration
MODEL_PATH = "ds_cnn_l_quantized.tflite"
DEFAULT_CONFIG = "u55_eval_with_TA_config_400_and_200_MHz.ini"
# Keywords based on Speech Commands dataset (12 classes)
KEYWORDS = [
"silence", "unknown", "yes", "no", "up", "down",
"left", "right", "on", "off", "stop", "go"
]
print("Loading DSCNN TensorFlow Lite model...")
try:
# Load the TFLite model
interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
interpreter.allocate_tensors()
# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(f"β
DSCNN model loaded successfully!")
print(f"Input shape: {input_details[0]['shape']}")
print(f"Output shape: {output_details[0]['shape']}")
print(f"Input dtype: {input_details[0]['dtype']}")
print(f"Output dtype: {output_details[0]['dtype']}")
except Exception as e:
print(f"β Error loading DSCNN model: {e}")
interpreter = None
# Vela config file is copied from SR app
def extract_summary_from_log(log_text):
summary_keys = [
"Accelerator configuration",
"Accelerator clock",
"Total SRAM used",
"Total On-chip Flash used",
"CPU operators",
"NPU operators",
"Batch Inference time"
]
summary = []
for key in summary_keys:
match = re.search(rf"{re.escape(key)}\s+(.+)", log_text)
if match:
value = match.group(1).strip()
if key == "Batch Inference time":
value = value.split(",")[0].strip()
key = "Inference time"
summary.append((key, value))
return summary
def run_vela(model_file):
accel = "ethos-u55-128"
optimise = "Size"
mem_mode = "Sram_Only"
sys_config = "Ethos_U55_400MHz_SRAM_3.2_GBs_Flash_0.05_GBs"
tmpdir = tempfile.mkdtemp()
try:
# Use the original uploaded model filename
original_model_name = os.path.basename(model_file)
model_path = os.path.join(tmpdir, original_model_name)
shutil.copy(model_file, model_path)
config_path = os.path.join(tmpdir, DEFAULT_CONFIG)
shutil.copy(DEFAULT_CONFIG, config_path)
output_dir = os.path.join(tmpdir, "vela_out")
os.makedirs(output_dir, exist_ok=True)
cmd = [
"vela",
f"--accelerator-config={accel}",
f"--optimise={optimise}",
f"--config={config_path}",
f"--memory-mode={mem_mode}",
f"--system-config={sys_config}",
model_path,
"--verbose-cycle-estimate",
"--verbose-performance",
f"--output-dir={output_dir}"
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
vela_stdout = result.stdout
# Check for unsupported model patterns in logs
unsupported_patterns = [
"Warning: Unsupported TensorFlow Lite semantics",
"Network Tops/s nan Tops/s",
"Neural network macs 0 MACs/batch"
]
if any(pat in vela_stdout for pat in unsupported_patterns):
summary_html = (
"<div class='sr110-results card' style='background:#fafafa;border-radius:12px;box-shadow:0 4px 6px -1px rgba(0,0,0,0.1),0 2px 4px -1px rgba(0,0,0,0.06);border:1px solid #e5e7eb;margin-bottom:1.5rem;max-width:500px;width:100%;margin:auto;overflow:hidden;'>"
"<div class='card-header' style='background:linear-gradient(135deg,#dc2626 0%,#b91c1c 100%);color:white;padding:1rem 1.5rem;border-radius:12px 12px 0 0;font-weight:600;font-size:1.1rem;'>"
"<span style='color:white;font-weight:600;'>Unsupported Model</span>"
"</div>"
"<div class='card-content' style='padding:1.5rem;color:#4b5563;line-height:1.6;background:#fafafa;text-align:center;'>"
"This model has unsupported layers and needs investigation based on layers.<br><br>"
"Please use Vela compiler on your Host Machine for further analysis."
"</div></div>"
)
# Try to provide per-layer.csv if available for download
per_layer_csv = None
for log_fname in os.listdir(output_dir):
if log_fname.endswith("per-layer.csv"):
per_layer_csv = os.path.join("/tmp", log_fname)
shutil.copy(os.path.join(output_dir, log_fname), per_layer_csv)
break
return summary_html, None, per_layer_csv
model_filename = os.path.basename(model_file)
if model_filename:
vela_stdout = vela_stdout.replace(
"Network summary for",
f"Network summary for {model_filename} ("
)
summary_items = extract_summary_from_log(vela_stdout)
# Convert summary_items to dict for easy access
summary_dict = dict(summary_items) if summary_items else {}
# Build 4 cards for results
def clean_ops(val):
# Remove '=' and leading/trailing spaces
return val.lstrip("= ").strip() if isinstance(val, str) else val
summary_html = (
"<div class='sr110-results card' style='background:#fafafa;border-radius:12px;box-shadow:0 4px 6px -1px rgba(0,0,0,0.1),0 2px 4px -1px rgba(0,0,0,0.06);border:1px solid #e5e7eb;margin-bottom:1.5rem;max-width:500px;width:100%;margin:auto;overflow:hidden;'>"
"<div class='card-header' style='background:linear-gradient(135deg,#1975cf 0%,#1557b0 100%);color:white;padding:1rem 1.5rem;border-radius:12px 12px 0 0;font-weight:600;font-size:1.1rem;'>"
"<span style='color:white;font-weight:600;'>Estimated Results on SR110</span>"
"</div>"
"<div class='card-content' style='padding:1.5rem;color:#4b5563;line-height:1.6;background:#fafafa;'>"
"<div style='display:grid;grid-template-columns:1fr 1fr;gap:1.5rem;'>"
# Card 1: Accelerator
"<div class='stat-item' style='background:#f8fafc;padding:1rem;border-radius:8px;border-left:4px solid #1975cf;'>"
"<div class='stat-label' style='font-weight:600;color:#1975cf;font-size:0.9rem;margin-bottom:0.5rem;'>Accelerator</div>"
f"<div class='stat-value' style='color:#4b5563;font-size:0.85rem;'><strong>Configuration:</strong> {summary_dict.get('Accelerator configuration','-')}<br><strong>Clock:</strong> {summary_dict.get('Accelerator clock','-')}</div>"
"</div>"
# Card 2: Memory Usage
"<div class='stat-item' style='background:#f8fafc;padding:1rem;border-radius:8px;border-left:4px solid #1975cf;'>"
"<div class='stat-label' style='font-weight:600;color:#1975cf;font-size:0.9rem;margin-bottom:0.5rem;'>Memory Usage</div>"
f"<div class='stat-value' style='color:#4b5563;font-size:0.85rem;'><strong>Total SRAM:</strong> {summary_dict.get('Total SRAM used','-')}<br><strong>Total Flash:</strong> {summary_dict.get('Total On-chip Flash used','-')}</div>"
"</div>"
# Card 3: Operator Distribution
"<div class='stat-item' style='background:#f8fafc;padding:1rem;border-radius:8px;border-left:4px solid #1975cf;'>"
"<div class='stat-label' style='font-weight:600;color:#1975cf;font-size:0.9rem;margin-bottom:0.5rem;'>Operator Distribution</div>"
f"<div class='stat-value' style='color:#4b5563;font-size:0.85rem;'><strong>CPU Operators:</strong> {clean_ops(summary_dict.get('CPU operators','-'))}<br><strong>NPU Operators:</strong> {clean_ops(summary_dict.get('NPU operators','-'))}</div>"
"</div>"
# Card 4: Performance
"<div class='stat-item' style='background:#f8fafc;padding:1rem;border-radius:8px;border-left:4px solid #1975cf;'>"
"<div class='stat-label' style='font-weight:600;color:#1975cf;font-size:0.9rem;margin-bottom:0.5rem;'>Performance</div>"
f"<div class='stat-value' style='color:#4b5563;font-size:0.85rem;'><strong>Inference time:</strong> {summary_dict.get('Inference time','-')}</div>"
"</div>"
"</div></div></div>"
) if summary_items else "<div style='color:red'>Summary info not found in log.</div>"
for fname in os.listdir(output_dir):
if fname.endswith("vela.tflite"):
final_path = os.path.join("/tmp", fname)
shutil.copy(os.path.join(output_dir, fname), final_path)
# Find per-layer.csv file for logs
per_layer_csv = None
for log_fname in os.listdir(output_dir):
if log_fname.endswith("per-layer.csv"):
per_layer_csv = os.path.join("/tmp", log_fname)
shutil.copy(os.path.join(output_dir, log_fname), per_layer_csv)
break
return summary_html, final_path, per_layer_csv
# If no tflite, still try to return per-layer.csv if present
per_layer_csv = None
for log_fname in os.listdir(output_dir):
if log_fname.endswith("per-layer.csv"):
per_layer_csv = os.path.join("/tmp", log_fname)
shutil.copy(os.path.join(output_dir, log_fname), per_layer_csv)
break
return summary_html, None, per_layer_csv
finally:
shutil.rmtree(tmpdir)
# Run Vela analysis on startup and cache results
print("Running Vela analysis on DSCNN model...")
try:
vela_html, compiled_model, per_layer_csv = run_vela(MODEL_PATH)
except Exception as e:
vela_html = f"<div style='color:red'>Vela analysis failed: {str(e)}</div>"
def extract_mfcc_features(audio_path, target_length=490):
"""
Extract MFCC features exactly as specified in the original DSCNN paper.
Based on "Hello Edge: Keyword Spotting on Microcontrollers"
Parameters from paper:
- 40ms frame length (640 samples at 16kHz)
- 20ms stride (320 samples at 16kHz)
- 10 MFCC features per frame
- 49 frames total for 1 second β 49Γ10 = 490 features
"""
try:
# Load audio and resample to 16kHz (standard for speech commands)
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
# Ensure audio is exactly 1 second (16000 samples)
if len(audio) < 16000:
# Pad with zeros
audio = np.pad(audio, (0, 16000 - len(audio)), 'constant')
else:
# Truncate to 1 second
audio = audio[:16000]
# DSCNN paper parameters
frame_length = 640 # 40ms at 16kHz
hop_length = 320 # 20ms at 16kHz (50% overlap)
n_mfcc = 10 # 10 MFCC features as in paper
n_fft = 1024 # FFT size
n_mels = 40 # Mel filter bank size (before DCT)
# Extract mel spectrogram
mel_spec = librosa.feature.melspectrogram(
y=audio,
sr=sr,
n_fft=n_fft,
hop_length=hop_length,
win_length=frame_length,
n_mels=n_mels,
fmin=20,
fmax=4000
)
# Convert to log scale
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
# Apply DCT to get MFCC features (only take first 10 coefficients)
mfcc_features = dct(log_mel_spec, axis=0, norm='ortho')[:n_mfcc, :]
# Should be shape (10, 49) for 1 second of audio
print(f"MFCC shape before flattening: {mfcc_features.shape}")
# Flatten to 1D array (10 Γ 49 = 490 features)
features_flat = mfcc_features.flatten()
# Ensure exactly 490 features
if len(features_flat) > target_length:
features_flat = features_flat[:target_length]
elif len(features_flat) < target_length:
features_flat = np.pad(features_flat, (0, target_length - len(features_flat)), 'constant')
print(f"Features length after processing: {len(features_flat)}")
# Normalize features (zero mean, unit variance)
features_flat = (features_flat - np.mean(features_flat)) / (np.std(features_flat) + 1e-8)
# Quantize to INT8 range for DSCNN model
# Scale to approximately match training distribution
features_int8 = np.clip(features_flat * 127.0, -128, 127).astype(np.int8)
return features_int8.reshape(1, -1) # Shape: (1, 490)
except Exception as e:
raise Exception(f"Error extracting MFCC features: {str(e)}")
def classify_audio(audio_input):
"""
Classify the input audio using the DSCNN model and return keyword predictions.
"""
if audio_input is None:
return "Please upload an audio file or record audio."
if interpreter is None:
return "β DSCNN model not loaded. Please refresh the page and try again."
try:
# Extract MFCC features
features = extract_mfcc_features(audio_input)
print(f"Input features shape: {features.shape}")
print(f"Input features dtype: {features.dtype}")
print(f"Input features range: [{features.min()}, {features.max()}]")
# Set input tensor
interpreter.set_tensor(input_details[0]['index'], features)
# Run inference
interpreter.invoke()
# Get output
output_data = interpreter.get_tensor(output_details[0]['index'])
print(f"Raw output shape: {output_data.shape}")
print(f"Raw output dtype: {output_data.dtype}")
print(f"Raw output range: [{output_data.min()}, {output_data.max()}]")
# Handle quantized INT8 output
if output_data.dtype == np.int8:
# Dequantize INT8 to float (assuming symmetric quantization)
# Scale factor is typically around 1/128 for INT8
logits = output_data.astype(np.float32) / 128.0
else:
logits = output_data.astype(np.float32)
# Apply softmax to get probabilities
exp_logits = np.exp(logits - np.max(logits))
probabilities = exp_logits / np.sum(exp_logits)
# Get predictions with confidence scores
predictions = []
for i, prob in enumerate(probabilities[0]):
predictions.append({
'label': KEYWORDS[i],
'score': float(prob)
})
# Sort by confidence score
predictions = sorted(predictions, key=lambda x: x['score'], reverse=True)
# Format results
results = []
for i, pred in enumerate(predictions[:5]):
confidence = pred['score'] * 100
label = pred['label']
indicator = "π―" if i == 0 else " "
results.append(f"{indicator} {i+1}. **{label}**: {confidence:.1f}%")
return "\n".join(results)
except Exception as e:
error_msg = str(e)
if "mfcc" in error_msg.lower() or "librosa" in error_msg.lower():
return "β Audio processing error. Please ensure your audio file is in a supported format (WAV, MP3, etc.)"
elif "model" in error_msg.lower() or "tensor" in error_msg.lower():
return "β Model inference error. Please try recording a clear 1-second audio clip."
else:
return f"β Error processing audio: {error_msg}\n\nTip: Try recording a clear 1-second word like 'yes' or 'stop'."
def load_example_audio(example_name):
"""Load example audio for demonstration."""
# This would load pre-recorded examples if available
return None
def compile_uploaded_model(model_file):
"""Compile uploaded model with Vela and return results"""
if model_file is None:
error_html = (
"<div class='sr110-results card' style='background:#fafafa;border-radius:12px;box-shadow:0 4px 6px -1px rgba(0,0,0,0.1),0 2px 4px -1px rgba(0,0,0,0.06);border:1px solid #e5e7eb;margin-bottom:1.5rem;max-width:500px;width:100%;margin:auto;overflow:hidden;'>"
"<div class='card-header' style='background:linear-gradient(135deg,#dc2626 0%,#b91c1c 100%);color:white;padding:1rem 1.5rem;border-radius:12px 12px 0 0;font-weight:600;font-size:1.1rem;'>"
"<span style='color:white;font-weight:600;'>No Model</span>"
"</div>"
"<div class='card-content' style='padding:1.5rem;color:#4b5563;line-height:1.6;background:#fafafa;text-align:center;'>"
"No model file uploaded."
"</div></div>"
)
return (
error_html,
gr.update(visible=False, value=None),
gr.update(visible=False, value=None)
)
try:
# Run Vela analysis on uploaded model
results_html, compiled_model_path, per_layer_csv = run_vela(model_file)
return (
results_html,
gr.update(visible=compiled_model_path is not None, value=compiled_model_path),
gr.update(visible=per_layer_csv is not None, value=per_layer_csv)
)
except Exception as e:
error_html = (
"<div class='sr110-results card' style='background:#fafafa;border-radius:12px;box-shadow:0 4px 6px -1px rgba(0,0,0,0.1),0 2px 4px -1px rgba(0,0,0,0.06);border:1px solid #e5e7eb;margin-bottom:1.5rem;max-width:500px;width:100%;margin:auto;overflow:hidden;'>"
"<div class='card-header' style='background:linear-gradient(135deg,#dc2626 0%,#b91c1c 100%);color:white;padding:1rem 1.5rem;border-radius:12px 12px 0 0;font-weight:600;font-size:1.1rem;'>"
"<span style='color:white;font-weight:600;'>Compilation Failed</span>"
"</div>"
"<div class='card-content' style='padding:1.5rem;color:#4b5563;line-height:1.6;background:#fafafa;text-align:center;'>"
f"Vela compilation failed: {str(e)}"
"</div></div>"
)
return (
error_html,
gr.update(visible=False, value=None),
gr.update(visible=False, value=None)
)
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Default(primary_hue="blue", neutral_hue="gray"),
title="DSCNN Wake Word Detection",
css="""
body {
background: #fafafa !important;
}
.gradio-container {
max-width: none !important;
margin: 0 !important;
background-color: #fafafa !important;
font-family: 'Inter', 'Segoe UI', -apple-system, sans-serif !important;
width: 100vw !important;
}
.gr-row {
display: flex !important;
justify-content: center !important;
align-items: flex-start !important;
gap: 48px !important;
}
.gr-column {
align-items: flex-start !important;
justify-content: flex-start !important;
}
.fixed-upload-box {
width: 100% !important;
max-width: 420px !important;
margin-bottom: 18px !important;
}
.download-btn-custom, .compile-btn-custom {
width: 100% !important;
margin-bottom: 18px !important;
}
.upload-file-box .w-full, .download-file-box .w-full {
height: 120px !important;
background: #232b36 !important;
border-radius: 8px !important;
color: #fff !important;
font-weight: 600 !important;
font-size: 1.1em !important;
box-shadow: none !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
}
.upload-file-box .w-full .file-preview {
margin: 0 auto !important;
text-align: center !important;
width: 100%;
}
#run-vela-btn, .compile-btn, .compile-btn-custom {
background-color: #007dc3 !important;
color: white !important;
font-size: 1.1em;
border-radius: 8px;
margin-top: 12px;
margin-bottom: 18px;
text-align: center;
height: 40px !important;
}
.results-summary-box, #results-summary {
margin-left: 0 !important;
}
h1, h3, .gr-markdown h1, .gr-markdown h3 { color: #1976d2 !important; }
p, .gr-markdown p, .gr-markdown span, .gr-markdown { color: #222 !important; }
.custom-footer {
display: block !important;
margin: 40px auto 0 auto !important;
max-width: 600px !important;
width: 100% !important;
background: #e6f4ff !important;
border-radius: 10px !important;
box-shadow: 0 2px 2px #0001 !important;
padding: 24px 32px 24px 32px !important;
font-size: 1.13em !important;
color: #0a2540 !important;
font-family: sans-serif !important;
text-align: center !important;
position: relative !important;
z-index: 10 !important;
}
.custom-footer a {
color: #0074d9 !important;
text-decoration: underline !important;
font-weight: 700 !important;
}
.card {
background: #fafafa !important;
border-radius: 12px !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
border: 1px solid #e5e7eb !important;
margin-bottom: 1.5rem !important;
transition: all 0.2s ease-in-out !important;
overflow: hidden !important;
}
.card > * {
padding: 0 !important;
margin: 0 !important;
}
.card:hover {
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05) !important;
transform: translateY(-1px) !important;
}
.card-header {
background: linear-gradient(135deg, #1975cf 0%, #1557b0 100%) !important;
color: white !important;
padding: 1rem 1.5rem !important;
border-radius: 12px 12px 0 0 !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
}
.card-header,
div.card-header,
div.card-header span,
div.card-header * {
color: white !important;
}
.card-content {
padding: 1.5rem !important;
color: #4b5563 !important;
line-height: 1.6 !important;
background: #fafafa !important;
}
.stats-grid {
display: grid !important;
grid-template-columns: 1fr 1fr !important;
gap: 1.5rem !important;
margin-top: 1.5rem !important;
}
.stat-item {
background: #f8fafc !important;
padding: 1rem !important;
border-radius: 8px !important;
border-left: 4px solid #1975cf !important;
}
.stat-label {
font-weight: 600 !important;
color: #4b5563 !important;
font-size: 0.9rem !important;
margin-bottom: 0.5rem !important;
}
.stat-value {
color: #4b5563 !important;
font-size: 0.85rem !important;
}
.btn-example {
background: #f1f5f9 !important;
border: 1px solid #cbd5e1 !important;
color: #4b5563 !important;
border-radius: 6px !important;
transition: all 0.2s ease !important;
margin: 0.35rem !important;
padding: 0.5rem 1rem !important;
}
.btn-example:hover {
background: #1975cf !important;
border-color: #1975cf !important;
color: white !important;
}
.btn-primary {
background: #1975cf !important;
border-color: #1975cf !important;
color: white !important;
}
.btn-primary:hover {
background: #1557b0 !important;
border-color: #1557b0 !important;
}
.markdown {
color: #374151 !important;
}
.results-text {
color: #4b5563 !important;
font-weight: 500 !important;
padding: 0 !important;
margin: 0 !important;
}
.results-text p {
color: #4b5563 !important;
margin: 0.5rem 0 !important;
}
.results-text * {
color: #4b5563 !important;
}
div[data-testid="markdown"] p {
color: #4b5563 !important;
}
.prose {
color: #4b5563 !important;
}
.prose * {
color: #4b5563 !important;
}
.card-header,
.card-header * {
color: white !important;
}
/* Override grey colors for SR110 Vela results section - MUST be after prose rules */
.prose .sr110-results,
.prose .sr110-results *,
.prose .sr110-results h3,
.prose .sr110-results div,
.prose .sr110-results span,
.sr110-results,
.sr110-results *,
.sr110-results h3,
.sr110-results div,
.sr110-results span {
color: inherit !important;
}
/* Preserve original colors for dark theme cards with higher specificity */
.prose .sr110-results .sr110-card,
.sr110-results .sr110-card {
background: #23233a !important;
}
.prose .sr110-results .sr110-title,
.sr110-results .sr110-title {
color: #00b0ff !important;
}
.prose .sr110-results .sr110-label,
.sr110-results .sr110-label {
color: #ccc !important;
}
.prose .sr110-results .sr110-value,
.sr110-results .sr110-value {
color: #fff !important;
}
"""
) as demo:
gr.HTML("""
<div class="main-header">
<h1>DSCNN Wake Word Detection</h1>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_audio = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Record or Upload Audio",
value=None
)
classify_btn = gr.Button(
"Detect Wake Word",
variant="primary",
size="lg",
elem_classes=["btn-primary"]
)
with gr.Group(elem_classes=["card"]):
gr.HTML('<div class="card-header"><span style="color: white; font-weight: 600;">Supported Keywords</span></div>')
with gr.Column(elem_classes=["card-content"]):
gr.HTML("""
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 0.5rem; text-align: center;">
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">yes</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">no</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">up</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">down</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">left</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">right</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">on</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">off</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">stop</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">go</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">silence</div>
<div style="padding: 0.5rem; background: #f8fafc; border-radius: 6px; font-weight: 500;">unknown</div>
</div>
""")
with gr.Column(scale=1):
# Display Vela analysis results (dynamic)
vela_results_html = gr.HTML(vela_html)
with gr.Group(elem_classes=["card"]):
gr.HTML('<div class="card-header"><span style="color: white; font-weight: 600;">Wake Word Detection Results</span></div>')
with gr.Column(elem_classes=["card-content"]):
output_text = gr.Markdown(
value="Record or upload audio to see wake word predictions...",
label="",
elem_classes=["results-text"]
)
# Set up event handlers
classify_btn.click(
fn=classify_audio,
inputs=input_audio,
outputs=output_text
)
# Auto-classify when audio is uploaded
input_audio.change(
fn=classify_audio,
inputs=input_audio,
outputs=output_text
)
# Launch the demo
if __name__ == "__main__":
demo.launch() |