Spaces:
Runtime error
Runtime error
Commit
·
3bb2e98
1
Parent(s):
6187777
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,227 +1,59 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
| 4 |
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
-
from torch.utils.data import Dataset, DataLoader
|
| 8 |
-
from transformers import AutoTokenizer,AutoModel
|
| 9 |
-
import random
|
| 10 |
-
from bs4 import BeautifulSoup
|
| 11 |
-
import re
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
test_labels_paths = "test_labels.csv"
|
| 21 |
-
test_df = pd.read_csv(test_path)
|
| 22 |
-
test_labels_df = pd.read_csv(test_labels_paths)
|
| 23 |
-
test_df = pd.concat([test_df.iloc[:, 1], test_labels_df.iloc[:, 1:]], axis = 1)
|
| 24 |
-
test_df.to_csv("test-dataset.csv")
|
| 25 |
-
test_dataset_path = "test-dataset.csv"
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
attributes = ['toxic', 'severe_toxic', 'obscene', 'threat',
|
| 34 |
-
'insult', 'identity_hate', 'healthy']
|
| 35 |
-
|
| 36 |
-
class Comments_Dataset(Dataset):
|
| 37 |
-
def __init__(self, data_path, tokenizer, attributes, max_token_len = 128, sample=5000):
|
| 38 |
-
self.data_path = data_path
|
| 39 |
-
self.tokenizer = tokenizer
|
| 40 |
-
self.attributes = attributes
|
| 41 |
-
self.max_token_len = max_token_len
|
| 42 |
-
self.sample = sample
|
| 43 |
-
self._prepare_data()
|
| 44 |
-
|
| 45 |
-
def _prepare_data(self):
|
| 46 |
-
data = pd.read_csv(self.data_path)
|
| 47 |
-
data["healthy"] = data.apply(healthy_filter,axis=1)
|
| 48 |
-
data["unhealthy"] = np.where(data['healthy']==1, 0, 1)
|
| 49 |
-
if self.sample is not None:
|
| 50 |
-
unhealthy = data.loc[data["healthy"] == 0]
|
| 51 |
-
healthy = data.loc[data["healthy"] ==1]
|
| 52 |
-
self.data = pd.concat([unhealthy, healthy.sample(self.sample, random_state=42)])
|
| 53 |
-
else:
|
| 54 |
-
self.data = data
|
| 55 |
-
|
| 56 |
-
def __len__(self):
|
| 57 |
-
return len(self.data)
|
| 58 |
-
|
| 59 |
-
def __getitem__(self,index):
|
| 60 |
-
item = self.data.iloc[index]
|
| 61 |
-
comment = str(item.comment_text)
|
| 62 |
-
attributes = torch.FloatTensor(item[self.attributes])
|
| 63 |
-
tokens = self.tokenizer.encode_plus(comment,
|
| 64 |
-
add_special_tokens=True,
|
| 65 |
-
return_tensors='pt',
|
| 66 |
-
truncation=True,
|
| 67 |
-
padding='max_length',
|
| 68 |
-
max_length=self.max_token_len,
|
| 69 |
-
return_attention_mask = True)
|
| 70 |
-
return {'input_ids': tokens.input_ids.flatten(), 'attention_mask': tokens.attention_mask.flatten(), 'labels': attributes}
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
class Comments_Data_Module(pl.LightningDataModule):
|
| 74 |
-
|
| 75 |
-
def __init__(self, train_path, val_path, attributes, batch_size: int = 16, max_token_length: int = 128, model_name='roberta-base'):
|
| 76 |
-
super().__init__()
|
| 77 |
-
self.train_path = train_path
|
| 78 |
-
self.val_path = val_path
|
| 79 |
-
self.attributes = attributes
|
| 80 |
-
self.batch_size = batch_size
|
| 81 |
-
self.max_token_length = max_token_length
|
| 82 |
-
self.model_name = model_name
|
| 83 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 84 |
-
|
| 85 |
-
def setup(self, stage = None):
|
| 86 |
-
if stage in (None, "fit"):
|
| 87 |
-
self.train_dataset = Comments_Dataset(self.train_path, attributes=self.attributes, tokenizer=self.tokenizer)
|
| 88 |
-
self.val_dataset = Comments_Dataset(self.val_path, attributes=self.attributes, tokenizer=self.tokenizer, sample=None)
|
| 89 |
-
if stage == 'predict':
|
| 90 |
-
self.val_dataset = Comments_Dataset(self.val_path, attributes=self.attributes, tokenizer=self.tokenizer, sample=None)
|
| 91 |
-
|
| 92 |
-
def train_dataloader(self):
|
| 93 |
-
return DataLoader(self.train_dataset, batch_size = self.batch_size, num_workers=4, shuffle=True)
|
| 94 |
-
|
| 95 |
-
def val_dataloader(self):
|
| 96 |
-
return DataLoader(self.val_dataset, batch_size = self.batch_size, num_workers=4, shuffle=False)
|
| 97 |
-
|
| 98 |
-
def predict_dataloader(self):
|
| 99 |
-
return DataLoader(self.val_dataset, batch_size = self.batch_size, num_workers=4, shuffle=False)
|
| 100 |
-
|
| 101 |
-
comments_data_module = Comments_Data_Module(train_path, test_dataset_path, attributes=attributes)
|
| 102 |
-
comments_data_module.setup()
|
| 103 |
-
comments_data_module.train_dataloader()
|
| 104 |
-
|
| 105 |
-
class Comment_Classifier(pl.LightningModule):
|
| 106 |
-
def __init__(self, config: dict):
|
| 107 |
-
super().__init__()
|
| 108 |
-
self.config = config
|
| 109 |
-
self.pretrained_model = AutoModel.from_pretrained(config['model_name'], return_dict = True)
|
| 110 |
-
self.hidden = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.pretrained_model.config.hidden_size)
|
| 111 |
-
self.classifier = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.config['n_labels'])
|
| 112 |
-
torch.nn.init.xavier_uniform_(self.classifier.weight)
|
| 113 |
-
self.loss_func = nn.CrossEntropyLoss()
|
| 114 |
-
self.dropout = nn.Dropout()
|
| 115 |
-
|
| 116 |
-
def forward(self, input_ids, attention_mask, labels=None):
|
| 117 |
-
output = self.pretrained_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 118 |
-
pooled_output = torch.mean(output.last_hidden_state, 1)
|
| 119 |
-
pooled_output = self.dropout(pooled_output)
|
| 120 |
-
pooled_output = self.hidden(pooled_output)
|
| 121 |
-
pooled_output = F.relu(pooled_output)
|
| 122 |
-
pooled_output = self.dropout(pooled_output)
|
| 123 |
-
logits = self.classifier(pooled_output)
|
| 124 |
-
# calculate loss
|
| 125 |
-
loss = 0
|
| 126 |
-
if labels is not None:
|
| 127 |
-
loss = self.loss_func(logits.view(-1, self.config['n_labels']), labels.view(-1, self.config['n_labels']))
|
| 128 |
-
return loss, logits
|
| 129 |
-
|
| 130 |
-
def training_step(self, batch, batch_index):
|
| 131 |
-
loss, outputs = self(**batch)
|
| 132 |
-
self.log("train loss ", loss, prog_bar = True, logger=True)
|
| 133 |
-
return {"loss":loss, "predictions":outputs, "labels": batch["labels"]}
|
| 134 |
-
|
| 135 |
-
def validation_step(self, batch, batch_index):
|
| 136 |
-
loss, outputs = self(**batch)
|
| 137 |
-
self.log("validation loss ", loss, prog_bar = True, logger=True)
|
| 138 |
-
return {"val_loss": loss, "predictions":outputs, "labels": batch["labels"]}
|
| 139 |
-
|
| 140 |
-
def predict_step(self, batch, batch_index):
|
| 141 |
-
loss, outputs = self(**batch)
|
| 142 |
-
return outputs
|
| 143 |
-
|
| 144 |
-
def configure_optimizers(self):
|
| 145 |
-
optimizer = AdamW(self.parameters(), lr=self.config['lr'], weight_decay=self.config['weight_decay'])
|
| 146 |
-
total_steps = self.config['train_size']/self.config['batch_size']
|
| 147 |
-
warmup_steps = math.floor(total_steps * self.config['warmup'])
|
| 148 |
-
scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)
|
| 149 |
-
return [optimizer],[scheduler]
|
| 150 |
-
|
| 151 |
-
config = {
|
| 152 |
-
'model_name': 'distilroberta-base',
|
| 153 |
-
'n_labels': len(attributes),
|
| 154 |
-
'batch_size': 128,
|
| 155 |
-
'lr': 1.5e-6,
|
| 156 |
-
'warmup': 0.2,
|
| 157 |
-
'train_size': len(comments_data_module.train_dataloader()),
|
| 158 |
-
'weight_decay': 0.001,
|
| 159 |
-
'n_epochs': 100
|
| 160 |
-
}
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
model_name = 'distilroberta-base'
|
| 164 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 165 |
-
|
| 166 |
-
model = Comment_Classifier(config=config)
|
| 167 |
-
model.load_state_dict(torch.load("model_state_dict.pt"))
|
| 168 |
-
model.eval()
|
| 169 |
-
|
| 170 |
-
def prepare_tokenized_review(raw_review):
|
| 171 |
-
review_text = BeautifulSoup(raw_review).get_text()
|
| 172 |
-
review_text = re.sub("[^a-zA-Z!?]"," ", review_text)
|
| 173 |
-
words = review_text.lower().split()
|
| 174 |
-
|
| 175 |
-
return " ".join(words)
|
| 176 |
-
|
| 177 |
-
def get_encodings(text):
|
| 178 |
-
MAX_LEN=256
|
| 179 |
-
encodings = tokenizer.encode_plus(
|
| 180 |
-
text,
|
| 181 |
-
None,
|
| 182 |
-
add_special_tokens=True,
|
| 183 |
-
max_length=MAX_LEN,
|
| 184 |
padding='max_length',
|
| 185 |
truncation=True,
|
|
|
|
| 186 |
return_attention_mask=True,
|
| 187 |
-
return_tensors='pt'
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
df["Sentiment Score"] = max(result)
|
| 222 |
-
st.table(df)
|
| 223 |
-
next_tweet = st.form_submit_button("Next Tweet")
|
| 224 |
-
|
| 225 |
-
if next_tweet:
|
| 226 |
-
with st.spinner("Analyzing..."):
|
| 227 |
-
st.write("")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
import transformers
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load the pre-trained BERT model and tokenizer
|
| 7 |
+
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
|
| 8 |
+
model = transformers.BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=6)
|
| 9 |
|
| 10 |
+
# Set up the Streamlit app
|
| 11 |
+
st.title('Toxicity Classification App')
|
| 12 |
|
| 13 |
+
# Create a text input for the user to enter their text
|
| 14 |
+
text_input = st.text_input('Enter text to classify')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Create a button to run the classification
|
| 17 |
+
if st.button('Classify'):
|
| 18 |
+
# Tokenize the text and convert to input IDs
|
| 19 |
+
encoded_text = tokenizer.encode_plus(
|
| 20 |
+
text_input,
|
| 21 |
+
max_length=512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
padding='max_length',
|
| 23 |
truncation=True,
|
| 24 |
+
add_special_tokens=True,
|
| 25 |
return_attention_mask=True,
|
| 26 |
+
return_tensors='pt'
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Run the text through the model
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
output = model(encoded_text['input_ids'], encoded_text['attention_mask'])
|
| 32 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=1).tolist()[0]
|
| 33 |
+
|
| 34 |
+
# Display the classification results
|
| 35 |
+
st.write('Toxic:', probabilities[0])
|
| 36 |
+
st.write('Severe Toxic:', probabilities[1])
|
| 37 |
+
st.write('Obscene:', probabilities[2])
|
| 38 |
+
st.write('Threat:', probabilities[3])
|
| 39 |
+
st.write('Insult:', probabilities[4])
|
| 40 |
+
st.write('Identity Hate:', probabilities[5])
|
| 41 |
+
|
| 42 |
+
# Create a DataFrame to store the classification results
|
| 43 |
+
results_df = pd.DataFrame({
|
| 44 |
+
'Text': [text_input],
|
| 45 |
+
'Toxic': [probabilities[0]],
|
| 46 |
+
'Severe Toxic': [probabilities[1]],
|
| 47 |
+
'Obscene': [probabilities[2]],
|
| 48 |
+
'Threat': [probabilities[3]],
|
| 49 |
+
'Insult': [probabilities[4]],
|
| 50 |
+
'Identity Hate': [probabilities[5]]
|
| 51 |
+
})
|
| 52 |
+
|
| 53 |
+
# Append the classification results to the persistent DataFrame
|
| 54 |
+
if 'results' not in st.session_state:
|
| 55 |
+
st.session_state['results'] = pd.DataFrame(columns=results_df.columns)
|
| 56 |
+
st.session_state['results'] = st.session_state['results'].append(results_df, ignore_index=True)
|
| 57 |
+
|
| 58 |
+
# Display the persistent DataFrame
|
| 59 |
+
st.write('Classification Results:', st.session_state.get('results', pd.DataFrame()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|