Spaces:
Runtime error
Runtime error
Commit
·
624c70b
1
Parent(s):
20fdf2e
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
-
import transformers
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
# Load the pre-trained BERT model
|
8 |
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
-
|
12 |
-
|
13 |
-
# Define the toxicity classification function
|
14 |
-
def classify_toxicity(text):
|
15 |
-
result = pipeline(text)[0]
|
16 |
-
label = result['label']
|
17 |
-
score = result['score']
|
18 |
-
return label, score
|
19 |
-
|
20 |
|
21 |
# Define the Streamlit app
|
22 |
def app():
|
23 |
-
# Create a persistent DataFrame
|
24 |
if 'results' not in st.session_state:
|
25 |
st.session_state.results = pd.DataFrame(columns=['text', 'toxicity', 'score'])
|
26 |
-
|
27 |
# Create a form for users to enter their text
|
28 |
with st.form(key='text_form'):
|
29 |
text_input = st.text_input(label='Enter your text:')
|
@@ -31,18 +21,25 @@ def app():
|
|
31 |
|
32 |
# Classify the text and display the results
|
33 |
if submit_button and text_input != '':
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
st.write('Classification Result:')
|
36 |
st.write(f'Text: {text_input}')
|
37 |
st.write(f'Toxicity: {label}')
|
38 |
-
st.write(f'Score: {score}')
|
39 |
-
|
40 |
# Add the classification result to the persistent DataFrame
|
41 |
-
st.session_state.results = st.session_state.results.append(
|
|
|
|
|
42 |
|
43 |
# Display the persistent DataFrame
|
44 |
st.write('Classification Results:')
|
45 |
st.write(st.session_state.results)
|
46 |
|
47 |
if __name__ == '__main__':
|
48 |
-
app()
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import pandas as pd
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
|
5 |
+
# Load the pre-trained BERT model and pipeline for text classification
|
|
|
|
|
6 |
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define the Streamlit app
|
12 |
def app():
|
13 |
+
# Create a persistent DataFrame to store the classification results
|
14 |
if 'results' not in st.session_state:
|
15 |
st.session_state.results = pd.DataFrame(columns=['text', 'toxicity', 'score'])
|
16 |
+
|
17 |
# Create a form for users to enter their text
|
18 |
with st.form(key='text_form'):
|
19 |
text_input = st.text_input(label='Enter your text:')
|
|
|
21 |
|
22 |
# Classify the text and display the results
|
23 |
if submit_button and text_input != '':
|
24 |
+
# Classify the text using the pre-trained BERT model
|
25 |
+
result = classifier(text_input)[0]
|
26 |
+
label = result['label']
|
27 |
+
score = result['score']
|
28 |
+
|
29 |
+
# Display the classification results
|
30 |
st.write('Classification Result:')
|
31 |
st.write(f'Text: {text_input}')
|
32 |
st.write(f'Toxicity: {label}')
|
33 |
+
st.write(f'Score: {score:.3f}')
|
34 |
+
|
35 |
# Add the classification result to the persistent DataFrame
|
36 |
+
st.session_state.results = st.session_state.results.append(
|
37 |
+
{'text': text_input, 'toxicity': label, 'score': score}, ignore_index=True
|
38 |
+
)
|
39 |
|
40 |
# Display the persistent DataFrame
|
41 |
st.write('Classification Results:')
|
42 |
st.write(st.session_state.results)
|
43 |
|
44 |
if __name__ == '__main__':
|
45 |
+
app()
|