Jainesh212 commited on
Commit
e3903e3
·
1 Parent(s): f597a83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -0
app.py CHANGED
@@ -2,12 +2,15 @@ import streamlit as st
2
  import pandas as pd
3
  import transformers
4
  import torch
 
 
5
 
6
  # Load the pre-trained BERT model and tokenizer
7
  tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
8
  model = transformers.BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=6)
9
 
10
  # Set up the Streamlit app
 
11
  st.title('Toxicity Classification App')
12
 
13
  # Create a text input for the user to enter their text
@@ -57,3 +60,13 @@ if st.button('Classify'):
57
 
58
  # Display the persistent DataFrame
59
  st.write('Classification Results:', st.session_state.get('results', pd.DataFrame()))
 
 
 
 
 
 
 
 
 
 
 
2
  import pandas as pd
3
  import transformers
4
  import torch
5
+ import seaborn as sns
6
+ import matplotlib.pyplot as plt
7
 
8
  # Load the pre-trained BERT model and tokenizer
9
  tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
10
  model = transformers.BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=6)
11
 
12
  # Set up the Streamlit app
13
+ st.set_page_config(layout="wide")
14
  st.title('Toxicity Classification App')
15
 
16
  # Create a text input for the user to enter their text
 
60
 
61
  # Display the persistent DataFrame
62
  st.write('Classification Results:', st.session_state.get('results', pd.DataFrame()))
63
+
64
+ # Plot the distribution of probabilities for each category
65
+ if len(st.session_state.get('results', pd.DataFrame())) > 0:
66
+ df = st.session_state['results']
67
+ fig, axes = plt.subplots(ncols=2, figsize=(12, 6))
68
+ sns.histplot(data=df, x='Toxic', kde=True, ax=axes[0])
69
+ axes[0].set_title('Toxic Probability Distribution')
70
+ sns.histplot(data=df, x='Severe Toxic', kde=True, ax=axes[1])
71
+ axes[1].set_title('Severe Toxic Probability Distribution')
72
+ st.pyplot(fig)