File size: 6,762 Bytes
052a6c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr

from pythonnet import load

load("coreclr", runtime_config="lib\JTSParser.runtimeconfig.json")

import clr
from System import Reflection

import os

lib_path = os.path.abspath("lib\JTSParser.dll")

Reflection.Assembly.LoadFile(lib_path)
import YYZ.JTS.NB

import numpy as np
import plotly.graph_objects as go
import math

"""
def greet(name):
    return "Hello " + name + "!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
"""

def test():
    fig = go.Figure()

    fig.add_trace(go.Scatter3d(
        x=["2017-01-01", "2017-02-10", "2017-03-20"],
        y=["A", "B", "C"],
        z=[1, 1000, 100000],
        name="z",
    ))

    fig.update_layout(
        scene=dict(
            xaxis=dict(type="date"),
            yaxis=dict(type="category"),
            zaxis=dict(type="log"),
            annotations=[
            dict(
                showarrow=False,
                x="2017-01-01",
                y="A",
                z=0,
                text="Point 1",
                xanchor="left",
                xshift=10,
                opacity=0.7),
            dict(
                x="2017-02-10",
                y="B",
                z=4,
                text="Point 2",
                textangle=0,
                ax=0,
                ay=-75,
                font=dict(
                    color="black",
                    size=12
                ),
                arrowcolor="black",
                arrowsize=3,
                arrowwidth=1,
                arrowhead=1),
            dict(
                x="2017-03-20",
                y="C",
                z=5,
                ax=50,
                ay=0,
                text="Point 3",
                arrowhead=1,
                xanchor="left",
                yanchor="bottom"
            )]
        ),
    )
    return fig


def dock(x, limit):
    x1 = math.floor(x)
    yield x1
    x2 = min(math.ceil(x), limit)
    if x2 != x1:
        yield x2

default_path = "JTS_assets/ridge.map"

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(default_path, label="Map File (NB or CWB)", file_types=[".map"])
            labels_checkbox = gr.Checkbox(True, label="Labels")
            labels_size_threshold_number = gr.Number(0, label="Label Size Threshold", info="1 => Tactical, 2 => Normal, 3 => Important")
            # with gr.Row():
            with gr.Accordion("Roads"):
                with gr.Row():
                    path_checkbox = gr.Checkbox(label="Path")
                    road_checkbox = gr.Checkbox(label="Road")
                    pike_checkbox = gr.Checkbox(True, label="Pike")
                    railway_checkbox = gr.Checkbox(True, label="Railway")
            with gr.Row():
                road_offset_number = gr.Number(0.3, label="Road Offset")
                elevation_scale_number = gr.Number(0.1, label="Elevation Scale")
            plot_button = gr.Button("Plot")
        with gr.Column(scale=2):
            output_plot = gr.Plot()
    
    def plot(data):
        with open(data[file_input].name) as f:
            map_str = f.read()
        map_file = YYZ.JTS.NB.MapFile.Parse(map_str)
        graph = YYZ.JTS.NB.InfantryColumnGraph.FromMapFile(map_file)
        height_mat = np.empty([map_file.Height, map_file.Width])
        for i in range(map_file.Height):
            for j in range(map_file.Width):
                height_mat[i,j] = graph.HexMat[i, j].Height

        surface = go.Surface(
            x = np.arange(map_file.Width),
            y = np.arange(map_file.Height),
            z = height_mat
        )

        gl = []

        road_offset = data[road_offset_number]

        road_items = [
            (YYZ.JTS.NB.RoadType.Path, path_checkbox, 'gray'),
            (YYZ.JTS.NB.RoadType.Road, road_checkbox, 'green'),
            (YYZ.JTS.NB.RoadType.Pike, pike_checkbox, 'pink'),
            (YYZ.JTS.NB.RoadType.Railway, railway_checkbox, 'black')
        ]

        for road_type, checkbox, color in road_items:
            if data[checkbox]:
                for road in graph.SimplifyRoad(road_type):
                    x_line = []
                    y_line = []
                    z_line = []

                    for node in road:
                        x_line.append(node.X)
                        y_line.append(node.Y)
                        z_line.append(node.Height + road_offset)
                        
                    g = go.Scatter3d(
                        x=x_line, y=y_line, z=z_line,
                        line=dict(
                            color=color,
                            width=2
                        )
                    )
                    
                    gl.append(g)

        fig = go.Figure([surface] + gl)


        scene = {
            "aspectratio": {"x": 1, "y": 1, "z": data[elevation_scale_number]},
            'yaxis': {'autorange': 'reversed'},
        }

        if data[labels_checkbox]:

            labels_x = []
            labels_y = []
            labels_z = []
            labels_text = []

            for label in map_file.Labels:
                if label.Size >= data[labels_size_threshold_number]:
                    max_height = -1
                    x = label.X
                    y = label.Y
                    for dx in dock(x, map_file.Width-1):
                        for dy in dock(y, map_file.Height-1):
                            max_height = max(max_height, map_file.HeightMap[dy, dx])
                    labels_x.append(x)
                    labels_y.append(y)
                    labels_z.append(max_height)
                    labels_text.append(label.Name)

            scene["annotations"] = [
                dict(
                    showarrow=False,
                    x=x,
                    y=y,
                    z=z,
                    text=text,
                    xanchor="left",
                    xshift=10,
                    opacity=0.7,
                    bgcolor="white"
                )
                for x, y, z, text in zip(labels_x, labels_y, labels_z, labels_text)
            ]

        fig.update_layout(scene=scene, showlegend=False)

        return {output_plot: fig}

    plot_button.click(plot, {file_input, 
                             labels_checkbox, labels_size_threshold_number, 
                             path_checkbox, road_checkbox, pike_checkbox, railway_checkbox,
                             elevation_scale_number, road_offset_number}, {output_plot})
    # plot_button.click(lambda data: {output_img: test()}, {file_input, path_checkbox, road_checkbox, pike_checkbox, plot_button}, {output_img})

if __name__ == "__main__":
    demo.launch()