File size: 40,314 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
from typing import Callable, Union

import math
import torch
from torch import Tensor

import comfy.sample
import comfy.model_patcher
import comfy.utils
from comfy.controlnet import ControlBase
from comfy.model_patcher import ModelPatcher
from comfy.ldm.modules.attention import BasicTransformerBlock
from comfy.ldm.modules.diffusionmodules import openaimodel

from .logger import logger
from .utils import (AdvancedControlBase, ControlWeights, TimestepKeyframeGroup, AbstractPreprocWrapper,
                    deepcopy_with_sharing, prepare_mask_batch, broadcast_image_to_full)


def refcn_sample_factory(orig_comfy_sample: Callable, is_custom=False) -> Callable:
    def get_refcn(control: ControlBase, order: int=-1):
        ref_set: set[ReferenceAdvanced] = set()
        if control is None:
            return ref_set
        if type(control) == ReferenceAdvanced:
            control.order = order
            order -= 1
            ref_set.add(control)
        ref_set.update(get_refcn(control.previous_controlnet, order=order))
        return ref_set

    def refcn_sample(model: ModelPatcher, *args, **kwargs):
        # check if positive or negative conds contain ref cn
        positive = args[-3]
        negative = args[-2]
        ref_set = set()
        if positive is not None:
            for cond in positive:
                if "control" in cond[1]:
                    ref_set.update(get_refcn(cond[1]["control"]))
        if negative is not None:
            for cond in negative:
                if "control" in cond[1]:
                    ref_set.update(get_refcn(cond[1]["control"]))
        # if no ref cn found, do original function immediately
        if len(ref_set) == 0:
            return orig_comfy_sample(model, *args, **kwargs)
        # otherwise, injection time
        try:
            # inject
            # storage for all Reference-related injections
            reference_injections = ReferenceInjections()

            # first, handle attn module injection
            all_modules = torch_dfs(model.model)
            attn_modules: list[RefBasicTransformerBlock] = []
            for module in all_modules:
                if isinstance(module, BasicTransformerBlock):
                    attn_modules.append(module)
            attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock)]
            attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
            for i, module in enumerate(attn_modules):
                injection_holder = InjectionBasicTransformerBlockHolder(block=module, idx=i)
                injection_holder.attn_weight = float(i) / float(len(attn_modules))
                if hasattr(module, "_forward"): # backward compatibility
                    module._forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module))
                else:
                    module.forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module))
                module.injection_holder = injection_holder
                reference_injections.attn_modules.append(module)
            # figure out which module is middle block
            if hasattr(model.model.diffusion_model, "middle_block"):
                mid_modules = torch_dfs(model.model.diffusion_model.middle_block)
                mid_attn_modules: list[RefBasicTransformerBlock] = [module for module in mid_modules if isinstance(module, BasicTransformerBlock)]
                for module in mid_attn_modules:
                    module.injection_holder.is_middle = True

            # next, handle gn module injection (TimestepEmbedSequential)
            # TODO: figure out the logic behind these hardcoded indexes
            if type(model.model).__name__ == "SDXL":
                input_block_indices = [4, 5, 7, 8]
                output_block_indices = [0, 1, 2, 3, 4, 5]
            else:
                input_block_indices = [4, 5, 7, 8, 10, 11]
                output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7]
            if hasattr(model.model.diffusion_model, "middle_block"):
                module = model.model.diffusion_model.middle_block
                injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=0, is_middle=True)
                injection_holder.gn_weight = 0.0
                module.injection_holder = injection_holder
                reference_injections.gn_modules.append(module)
            for w, i in enumerate(input_block_indices):
                module = model.model.diffusion_model.input_blocks[i]
                injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_input=True)
                injection_holder.gn_weight = 1.0 - float(w) / float(len(input_block_indices))
                module.injection_holder = injection_holder
                reference_injections.gn_modules.append(module)
            for w, i in enumerate(output_block_indices):
                module = model.model.diffusion_model.output_blocks[i]
                injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_output=True)
                injection_holder.gn_weight = float(w) / float(len(output_block_indices))
                module.injection_holder = injection_holder
                reference_injections.gn_modules.append(module)
            # hack gn_module forwards and update weights
            for i, module in enumerate(reference_injections.gn_modules):
                module.injection_holder.gn_weight *= 2

            # handle diffusion_model forward injection
            reference_injections.diffusion_model_orig_forward = model.model.diffusion_model.forward
            model.model.diffusion_model.forward = factory_forward_inject_UNetModel(reference_injections).__get__(model.model.diffusion_model, type(model.model.diffusion_model))
            # store ordered ref cns in model's transformer options
            orig_model_options = model.model_options
            new_model_options = model.model_options.copy()
            new_model_options["transformer_options"] = model.model_options["transformer_options"].copy()
            ref_list: list[ReferenceAdvanced] = list(ref_set)
            new_model_options["transformer_options"][REF_CONTROL_LIST_ALL] = sorted(ref_list, key=lambda x: x.order)
            model.model_options = new_model_options
            # continue with original function
            return orig_comfy_sample(model, *args, **kwargs)
        finally:
            # cleanup injections
            # restore attn modules
            attn_modules: list[RefBasicTransformerBlock] = reference_injections.attn_modules
            for module in attn_modules:
                module.injection_holder.restore(module)
                module.injection_holder.clean()
                del module.injection_holder
            del attn_modules
            # restore gn modules
            gn_modules: list[RefTimestepEmbedSequential] = reference_injections.gn_modules
            for module in gn_modules:
                module.injection_holder.restore(module)
                module.injection_holder.clean()
                del module.injection_holder
            del gn_modules
            # restore diffusion_model forward function
            model.model.diffusion_model.forward = reference_injections.diffusion_model_orig_forward.__get__(model.model.diffusion_model, type(model.model.diffusion_model))
            # restore model_options
            model.model_options = orig_model_options
            # cleanup
            reference_injections.cleanup()
    return refcn_sample
# inject sample functions
comfy.sample.sample = refcn_sample_factory(comfy.sample.sample)
comfy.sample.sample_custom = refcn_sample_factory(comfy.sample.sample_custom, is_custom=True)


REF_ATTN_CONTROL_LIST = "ref_attn_control_list"
REF_ADAIN_CONTROL_LIST = "ref_adain_control_list"
REF_CONTROL_LIST_ALL = "ref_control_list_all"
REF_CONTROL_INFO = "ref_control_info"
REF_ATTN_MACHINE_STATE = "ref_attn_machine_state"
REF_ADAIN_MACHINE_STATE = "ref_adain_machine_state"
REF_COND_IDXS = "ref_cond_idxs"
REF_UNCOND_IDXS = "ref_uncond_idxs"


class MachineState:
    WRITE = "write"
    READ = "read"
    STYLEALIGN = "stylealign"
    OFF = "off"


class ReferenceType:
    ATTN = "reference_attn"
    ADAIN = "reference_adain"
    ATTN_ADAIN = "reference_attn+adain"
    STYLE_ALIGN = "StyleAlign"

    _LIST = [ATTN, ADAIN, ATTN_ADAIN]
    _LIST_ATTN = [ATTN, ATTN_ADAIN]
    _LIST_ADAIN = [ADAIN, ATTN_ADAIN]

    @classmethod
    def is_attn(cls, ref_type: str):
        return ref_type in cls._LIST_ATTN
    
    @classmethod
    def is_adain(cls, ref_type: str):
        return ref_type in cls._LIST_ADAIN


class ReferenceOptions:
    def __init__(self, reference_type: str,
                 attn_style_fidelity: float, adain_style_fidelity: float,
                 attn_ref_weight: float, adain_ref_weight: float,
                 attn_strength: float=1.0, adain_strength: float=1.0,
                 ref_with_other_cns: bool=False):
        self.reference_type = reference_type
        # attn
        self.original_attn_style_fidelity = attn_style_fidelity
        self.attn_style_fidelity = attn_style_fidelity
        self.attn_ref_weight = attn_ref_weight
        self.attn_strength = attn_strength
        # adain
        self.original_adain_style_fidelity = adain_style_fidelity
        self.adain_style_fidelity = adain_style_fidelity
        self.adain_ref_weight = adain_ref_weight
        self.adain_strength = adain_strength
        # other
        self.ref_with_other_cns = ref_with_other_cns
    
    def clone(self):
        return ReferenceOptions(reference_type=self.reference_type,
                                attn_style_fidelity=self.original_attn_style_fidelity, adain_style_fidelity=self.original_adain_style_fidelity,
                                attn_ref_weight=self.attn_ref_weight, adain_ref_weight=self.adain_ref_weight,
                                attn_strength=self.attn_strength, adain_strength=self.adain_strength,
                                ref_with_other_cns=self.ref_with_other_cns)

    @staticmethod
    def create_combo(reference_type: str, style_fidelity: float, ref_weight: float, ref_with_other_cns: bool=False):
        return ReferenceOptions(reference_type=reference_type,
                                attn_style_fidelity=style_fidelity, adain_style_fidelity=style_fidelity,
                                attn_ref_weight=ref_weight, adain_ref_weight=ref_weight,
                                ref_with_other_cns=ref_with_other_cns)



class ReferencePreprocWrapper(AbstractPreprocWrapper):
    error_msg = error_msg = "Invalid use of Reference Preprocess output. The output of RGB SparseCtrl preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply Advanced ControlNet node. It cannot be used for anything else that accepts IMAGE input."
    def __init__(self, condhint: Tensor):
        super().__init__(condhint)


class ReferenceAdvanced(ControlBase, AdvancedControlBase):
    CHANNEL_TO_MULT = {320: 1, 640: 2, 1280: 4}

    def __init__(self, ref_opts: ReferenceOptions, timestep_keyframes: TimestepKeyframeGroup, device=None):
        super().__init__(device)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())
        self.ref_opts = ref_opts
        self.order = 0
        self.latent_format = None
        self.model_sampling_current = None
        self.should_apply_attn_effective_strength = False
        self.should_apply_adain_effective_strength = False
        self.should_apply_effective_masks = False
        self.latent_shape = None

    def any_attn_strength_to_apply(self):
        return self.should_apply_attn_effective_strength or self.should_apply_effective_masks
    
    def any_adain_strength_to_apply(self):
        return self.should_apply_adain_effective_strength or self.should_apply_effective_masks

    def get_effective_strength(self):
        effective_strength = self.strength
        if self._current_timestep_keyframe is not None:
            effective_strength = effective_strength * self._current_timestep_keyframe.strength
        return effective_strength

    def get_effective_attn_mask_or_float(self, x: Tensor, channels: int, is_mid: bool):
        if not self.should_apply_effective_masks:
            return self.get_effective_strength() * self.ref_opts.attn_strength
        if is_mid:
            div = 8
        else:
            div = self.CHANNEL_TO_MULT[channels]
        real_mask = torch.ones([self.latent_shape[0], 1, self.latent_shape[2]//div, self.latent_shape[3]//div]).to(dtype=x.dtype, device=x.device) * self.strength * self.ref_opts.attn_strength
        self.apply_advanced_strengths_and_masks(x=real_mask, batched_number=self.batched_number)
        # mask is now shape [b, 1, h ,w]; need to turn into [b, h*w, 1]
        b, c, h, w = real_mask.shape
        real_mask = real_mask.permute(0, 2, 3, 1).reshape(b, h*w, c)
        return real_mask

    def get_effective_adain_mask_or_float(self, x: Tensor):
        if not self.should_apply_effective_masks:
            return self.get_effective_strength() * self.ref_opts.adain_strength
        b, c, h, w = x.shape
        real_mask = torch.ones([b, 1, h, w]).to(dtype=x.dtype, device=x.device) * self.strength * self.ref_opts.adain_strength
        self.apply_advanced_strengths_and_masks(x=real_mask, batched_number=self.batched_number)
        return real_mask

    def should_run(self):
        running = super().should_run()
        if not running:
            return running
        attn_run = False
        adain_run = False
        if ReferenceType.is_attn(self.ref_opts.reference_type):
            # attn will run as long as neither weight or strength is zero
            attn_run = not (math.isclose(self.ref_opts.attn_ref_weight, 0.0) or math.isclose(self.ref_opts.attn_strength, 0.0))
        if ReferenceType.is_adain(self.ref_opts.reference_type):
            # adain will run as long as neither weight or strength is zero
            adain_run = not (math.isclose(self.ref_opts.adain_ref_weight, 0.0) or math.isclose(self.ref_opts.adain_strength, 0.0))
        return attn_run or adain_run

    def pre_run_advanced(self, model, percent_to_timestep_function):
        AdvancedControlBase.pre_run_advanced(self, model, percent_to_timestep_function)
        if type(self.cond_hint_original) == ReferencePreprocWrapper:
            self.cond_hint_original = self.cond_hint_original.condhint
        self.latent_format = model.latent_format # LatentFormat object, used to process_in latent cond_hint
        self.model_sampling_current = model.model_sampling
        # SDXL is more sensitive to style_fidelity according to sd-webui-controlnet comments
        if type(model).__name__ == "SDXL":
            self.ref_opts.attn_style_fidelity = self.ref_opts.original_attn_style_fidelity ** 3.0
            self.ref_opts.adain_style_fidelity = self.ref_opts.original_adain_style_fidelity ** 3.0
        else:
            self.ref_opts.attn_style_fidelity = self.ref_opts.original_attn_style_fidelity
            self.ref_opts.adain_style_fidelity = self.ref_opts.original_adain_style_fidelity

    def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
        # normal ControlNet stuff
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                return control_prev

        dtype = x_noisy.dtype
        # prepare cond_hint - it is a latent, NOT an image
        #if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] != self.cond_hint.shape[2] or x_noisy.shape[3] != self.cond_hint.shape[3]:
        if self.cond_hint is not None:
            del self.cond_hint
        self.cond_hint = None
        # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
        if self.sub_idxs is not None and self.cond_hint_original.size(0) >= self.full_latent_length:
            self.cond_hint = comfy.utils.common_upscale(
                self.cond_hint_original[self.sub_idxs],
                x_noisy.shape[3], x_noisy.shape[2], 'nearest-exact', "center").to(dtype).to(self.device)
        else:
            self.cond_hint = comfy.utils.common_upscale(
                self.cond_hint_original,
                x_noisy.shape[3], x_noisy.shape[2], 'nearest-exact', "center").to(dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to_full(self.cond_hint, x_noisy.shape[0], batched_number, except_one=False)
        # noise cond_hint based on sigma (current step)
        self.cond_hint = self.latent_format.process_in(self.cond_hint)
        self.cond_hint = ref_noise_latents(self.cond_hint, sigma=t, noise=None)
        timestep = self.model_sampling_current.timestep(t)
        self.should_apply_attn_effective_strength = not (math.isclose(self.strength, 1.0) and math.isclose(self._current_timestep_keyframe.strength, 1.0) and math.isclose(self.ref_opts.attn_strength, 1.0))
        self.should_apply_adain_effective_strength = not (math.isclose(self.strength, 1.0) and math.isclose(self._current_timestep_keyframe.strength, 1.0) and math.isclose(self.ref_opts.adain_strength, 1.0))
        # prepare mask - use direct_attn, so the mask dims will match source latents (and be smaller)
        self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, direct_attn=True)
        self.should_apply_effective_masks = self.latent_keyframes is not None or self.mask_cond_hint is not None or self.tk_mask_cond_hint is not None
        self.latent_shape = list(x_noisy.shape)
        # done preparing; model patches will take care of everything now.
        # return normal controlnet stuff
        return control_prev

    def cleanup_advanced(self):
        super().cleanup_advanced()
        del self.latent_format
        self.latent_format = None
        del self.model_sampling_current
        self.model_sampling_current = None
        self.should_apply_attn_effective_strength = False
        self.should_apply_adain_effective_strength = False
        self.should_apply_effective_masks = False
    
    def copy(self):
        c = ReferenceAdvanced(self.ref_opts, self.timestep_keyframes)
        c.order = self.order
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c

    # avoid deepcopy shenanigans by making deepcopy not do anything to the reference
    # TODO: do the bookkeeping to do this in a proper way for all Adv-ControlNets
    def __deepcopy__(self, memo):
        return self


def ref_noise_latents(latents: Tensor, sigma: Tensor, noise: Tensor=None):
    sigma = sigma.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
    alpha_cumprod = 1 / ((sigma * sigma) + 1)
    sqrt_alpha_prod = alpha_cumprod ** 0.5
    sqrt_one_minus_alpha_prod = (1. - alpha_cumprod) ** 0.5
    if noise is None:
        # generator = torch.Generator(device="cuda")
        # generator.manual_seed(0)
        # noise = torch.empty_like(latents).normal_(generator=generator)
        # generator = torch.Generator()
        # generator.manual_seed(0)
        # noise = torch.randn(latents.size(), generator=generator).to(latents.device)
        noise = torch.randn_like(latents).to(latents.device)
    return sqrt_alpha_prod * latents + sqrt_one_minus_alpha_prod * noise


def simple_noise_latents(latents: Tensor, sigma: float, noise: Tensor=None):
    if noise is None:
        noise = torch.rand_like(latents)
    return latents + noise * sigma


class BankStylesBasicTransformerBlock:
    def __init__(self):
        self.bank = []
        self.style_cfgs = []
        self.cn_idx: list[int] = []
    
    def get_avg_style_fidelity(self):
        return sum(self.style_cfgs) / float(len(self.style_cfgs))
    
    def clean(self):
        del self.bank
        self.bank = []
        del self.style_cfgs
        self.style_cfgs = []
        del self.cn_idx
        self.cn_idx = []


class BankStylesTimestepEmbedSequential:
    def __init__(self):
        self.var_bank = []
        self.mean_bank = []
        self.style_cfgs = []
        self.cn_idx: list[int] = []

    def get_avg_var_bank(self):
        return sum(self.var_bank) / float(len(self.var_bank))

    def get_avg_mean_bank(self):
        return sum(self.mean_bank) / float(len(self.mean_bank))
    
    def get_avg_style_fidelity(self):
        return sum(self.style_cfgs) / float(len(self.style_cfgs))

    def clean(self):
        del self.mean_bank
        self.mean_bank = []
        del self.var_bank
        self.var_bank = []
        del self.style_cfgs
        self.style_cfgs = []
        del self.cn_idx
        self.cn_idx = []


class InjectionBasicTransformerBlockHolder:
    def __init__(self, block: BasicTransformerBlock, idx=None):
        if hasattr(block, "_forward"): # backward compatibility
            self.original_forward = block._forward
        else:
            self.original_forward = block.forward
        self.idx = idx
        self.attn_weight = 1.0
        self.is_middle = False
        self.bank_styles = BankStylesBasicTransformerBlock()
    
    def restore(self, block: BasicTransformerBlock):
        if hasattr(block, "_forward"): # backward compatibility
            block._forward = self.original_forward
        else:
            block.forward = self.original_forward

    def clean(self):
        self.bank_styles.clean()


class InjectionTimestepEmbedSequentialHolder:
    def __init__(self, block: openaimodel.TimestepEmbedSequential, idx=None, is_middle=False, is_input=False, is_output=False):
        self.original_forward = block.forward
        self.idx = idx
        self.gn_weight = 1.0
        self.is_middle = is_middle
        self.is_input = is_input
        self.is_output = is_output
        self.bank_styles = BankStylesTimestepEmbedSequential()
    
    def restore(self, block: openaimodel.TimestepEmbedSequential):
        block.forward = self.original_forward
    
    def clean(self):
        self.bank_styles.clean()


class ReferenceInjections:
    def __init__(self, attn_modules: list['RefBasicTransformerBlock']=None, gn_modules: list['RefTimestepEmbedSequential']=None):
        self.attn_modules = attn_modules if attn_modules else []
        self.gn_modules = gn_modules if gn_modules else []
        self.diffusion_model_orig_forward: Callable = None
    
    def clean_module_mem(self):
        for attn_module in self.attn_modules:
            try:
                attn_module.injection_holder.clean()
            except Exception:
                pass
        for gn_module in self.gn_modules:
            try:
                gn_module.injection_holder.clean()
            except Exception:
                pass

    def cleanup(self):
        self.clean_module_mem()
        del self.attn_modules
        self.attn_modules = []
        del self.gn_modules
        self.gn_modules = []
        self.diffusion_model_orig_forward = None


def factory_forward_inject_UNetModel(reference_injections: ReferenceInjections):
    def forward_inject_UNetModel(self, x: Tensor, *args, **kwargs):
        # get control and transformer_options from kwargs
        real_args = list(args)
        real_kwargs = list(kwargs.keys())
        control = kwargs.get("control", None)
        transformer_options = kwargs.get("transformer_options", None)
        # look for ReferenceAttnPatch objects to get ReferenceAdvanced objects
        ref_controlnets: list[ReferenceAdvanced] = transformer_options[REF_CONTROL_LIST_ALL]
        # discard any controlnets that should not run
        ref_controlnets = [x for x in ref_controlnets if x.should_run()]
        # if nothing related to reference controlnets, do nothing special
        if len(ref_controlnets) == 0:
            return reference_injections.diffusion_model_orig_forward(x, *args, **kwargs)
        try:
            # assign cond and uncond idxs
            batched_number = len(transformer_options["cond_or_uncond"])
            per_batch = x.shape[0] // batched_number
            indiv_conds = []
            for cond_type in transformer_options["cond_or_uncond"]:
                indiv_conds.extend([cond_type] * per_batch)
            transformer_options[REF_UNCOND_IDXS] = [i for i, x in enumerate(indiv_conds) if x == 1]
            transformer_options[REF_COND_IDXS] = [i for i, x in enumerate(indiv_conds) if x == 0]
            # check which controlnets do which thing
            attn_controlnets = []
            adain_controlnets = []
            for control in ref_controlnets:
                if ReferenceType.is_attn(control.ref_opts.reference_type):
                    attn_controlnets.append(control)
                if ReferenceType.is_adain(control.ref_opts.reference_type):
                    adain_controlnets.append(control)
            if len(adain_controlnets) > 0:
                # ComfyUI uses forward_timestep_embed with the TimestepEmbedSequential passed into it
                orig_forward_timestep_embed = openaimodel.forward_timestep_embed
                openaimodel.forward_timestep_embed = forward_timestep_embed_ref_inject_factory(orig_forward_timestep_embed)
            # handle running diffusion with ref cond hints
            for control in ref_controlnets:
                if ReferenceType.is_attn(control.ref_opts.reference_type):
                    transformer_options[REF_ATTN_MACHINE_STATE] = MachineState.WRITE
                else:
                    transformer_options[REF_ATTN_MACHINE_STATE] = MachineState.OFF
                if ReferenceType.is_adain(control.ref_opts.reference_type):
                    transformer_options[REF_ADAIN_MACHINE_STATE] = MachineState.WRITE
                else:
                    transformer_options[REF_ADAIN_MACHINE_STATE] = MachineState.OFF
                transformer_options[REF_ATTN_CONTROL_LIST] = [control]
                transformer_options[REF_ADAIN_CONTROL_LIST] = [control]

                orig_kwargs = kwargs
                if not control.ref_opts.ref_with_other_cns:
                    kwargs = kwargs.copy()
                    kwargs["control"] = None
                reference_injections.diffusion_model_orig_forward(control.cond_hint.to(dtype=x.dtype).to(device=x.device), *args, **kwargs)
                kwargs = orig_kwargs
            # run diffusion for real now
            transformer_options[REF_ATTN_MACHINE_STATE] = MachineState.READ
            transformer_options[REF_ADAIN_MACHINE_STATE] = MachineState.READ
            transformer_options[REF_ATTN_CONTROL_LIST] = attn_controlnets
            transformer_options[REF_ADAIN_CONTROL_LIST] = adain_controlnets
            return reference_injections.diffusion_model_orig_forward(x, *args, **kwargs)
        finally:
            # make sure banks are cleared no matter what happens - otherwise, RIP VRAM
            reference_injections.clean_module_mem()
            if len(adain_controlnets) > 0:
                openaimodel.forward_timestep_embed = orig_forward_timestep_embed

    return forward_inject_UNetModel


# dummy class just to help IDE keep track of injected variables
class RefBasicTransformerBlock(BasicTransformerBlock):
    injection_holder: InjectionBasicTransformerBlockHolder = None

def _forward_inject_BasicTransformerBlock(self: RefBasicTransformerBlock, x: Tensor, context: Tensor=None, transformer_options: dict[str]={}):
    extra_options = {}
    block = transformer_options.get("block", None)
    block_index = transformer_options.get("block_index", 0)
    transformer_patches = {}
    transformer_patches_replace = {}

    for k in transformer_options:
        if k == "patches":
            transformer_patches = transformer_options[k]
        elif k == "patches_replace":
            transformer_patches_replace = transformer_options[k]
        else:
            extra_options[k] = transformer_options[k]

    extra_options["n_heads"] = self.n_heads
    extra_options["dim_head"] = self.d_head

    if self.ff_in:
        x_skip = x
        x = self.ff_in(self.norm_in(x))
        if self.is_res:
            x += x_skip

    n: Tensor = self.norm1(x)
    if self.disable_self_attn:
        context_attn1 = context
    else:
        context_attn1 = None
    value_attn1 = None

    # Reference CN stuff
    uc_idx_mask = transformer_options.get(REF_UNCOND_IDXS, [])
    c_idx_mask = transformer_options.get(REF_COND_IDXS, [])
    # WRITE mode will only have one ReferenceAdvanced, other modes will have all ReferenceAdvanced
    ref_controlnets: list[ReferenceAdvanced] = transformer_options.get(REF_ATTN_CONTROL_LIST, None)
    ref_machine_state: str = transformer_options.get(REF_ATTN_MACHINE_STATE, None)
    # if in WRITE mode, save n and style_fidelity
    if ref_controlnets and ref_machine_state == MachineState.WRITE:
        if ref_controlnets[0].ref_opts.attn_ref_weight > self.injection_holder.attn_weight:
            self.injection_holder.bank_styles.bank.append(n.detach().clone())
            self.injection_holder.bank_styles.style_cfgs.append(ref_controlnets[0].ref_opts.attn_style_fidelity)
            self.injection_holder.bank_styles.cn_idx.append(ref_controlnets[0].order)

    if "attn1_patch" in transformer_patches:
        patch = transformer_patches["attn1_patch"]
        if context_attn1 is None:
            context_attn1 = n
        value_attn1 = context_attn1
        for p in patch:
            n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)

    if block is not None:
        transformer_block = (block[0], block[1], block_index)
    else:
        transformer_block = None
    attn1_replace_patch = transformer_patches_replace.get("attn1", {})
    block_attn1 = transformer_block
    if block_attn1 not in attn1_replace_patch:
        block_attn1 = block

    if block_attn1 in attn1_replace_patch:
        if context_attn1 is None:
            context_attn1 = n
            value_attn1 = n
        n = self.attn1.to_q(n)
        # Reference CN READ - use attn1_replace_patch appropriately
        if ref_machine_state == MachineState.READ and len(self.injection_holder.bank_styles.bank) > 0:
            bank_styles = self.injection_holder.bank_styles
            style_fidelity = bank_styles.get_avg_style_fidelity()
            real_bank = bank_styles.bank.copy()
            cn_idx = 0
            for idx, order in enumerate(bank_styles.cn_idx):
                # make sure matching ref cn is selected
                for i in range(cn_idx, len(ref_controlnets)):
                    if ref_controlnets[i].order == order:
                        cn_idx = i
                        break
                assert order == ref_controlnets[cn_idx].order
                if ref_controlnets[cn_idx].any_attn_strength_to_apply():
                    effective_strength = ref_controlnets[cn_idx].get_effective_attn_mask_or_float(x=n, channels=n.shape[2], is_mid=self.injection_holder.is_middle)
                    real_bank[idx] = real_bank[idx] * effective_strength + context_attn1 * (1-effective_strength)
            n_uc = self.attn1.to_out(attn1_replace_patch[block_attn1](
                n,
                self.attn1.to_k(torch.cat([context_attn1] + real_bank, dim=1)),
                self.attn1.to_v(torch.cat([value_attn1] + real_bank, dim=1)),
                extra_options))
            n_c = n_uc.clone()
            if len(uc_idx_mask) > 0 and not math.isclose(style_fidelity, 0.0):
                n_c[uc_idx_mask] = self.attn1.to_out(attn1_replace_patch[block_attn1](
                    n[uc_idx_mask],
                    self.attn1.to_k(context_attn1[uc_idx_mask]),
                    self.attn1.to_v(value_attn1[uc_idx_mask]),
                    extra_options))
            n = style_fidelity * n_c + (1.0-style_fidelity) * n_uc
            bank_styles.clean()
        else:
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
    else:
        # Reference CN READ - no attn1_replace_patch
        if ref_machine_state == MachineState.READ and len(self.injection_holder.bank_styles.bank) > 0:
            if context_attn1 is None:
                context_attn1 = n
            bank_styles = self.injection_holder.bank_styles
            style_fidelity = bank_styles.get_avg_style_fidelity()
            real_bank = bank_styles.bank.copy()
            cn_idx = 0
            for idx, order in enumerate(bank_styles.cn_idx):
                # make sure matching ref cn is selected
                for i in range(cn_idx, len(ref_controlnets)):
                    if ref_controlnets[i].order == order:
                        cn_idx = i
                        break
                assert order == ref_controlnets[cn_idx].order
                if ref_controlnets[cn_idx].any_attn_strength_to_apply():
                    effective_strength = ref_controlnets[cn_idx].get_effective_attn_mask_or_float(x=n, channels=n.shape[2], is_mid=self.injection_holder.is_middle)
                    real_bank[idx] = real_bank[idx] * effective_strength + context_attn1 * (1-effective_strength)
            n_uc: Tensor = self.attn1(
                n,
                context=torch.cat([context_attn1] + real_bank, dim=1),
                value=torch.cat([value_attn1] + real_bank, dim=1) if value_attn1 is not None else value_attn1)
            n_c = n_uc.clone()
            if len(uc_idx_mask) > 0 and not math.isclose(style_fidelity, 0.0):
                n_c[uc_idx_mask] = self.attn1(
                    n[uc_idx_mask],
                    context=context_attn1[uc_idx_mask],
                    value=value_attn1[uc_idx_mask] if value_attn1 is not None else value_attn1)
            n = style_fidelity * n_c + (1.0-style_fidelity) * n_uc
            bank_styles.clean()
        else:
            n = self.attn1(n, context=context_attn1, value=value_attn1)

    if "attn1_output_patch" in transformer_patches:
        patch = transformer_patches["attn1_output_patch"]
        for p in patch:
            n = p(n, extra_options)

    x += n
    if "middle_patch" in transformer_patches:
        patch = transformer_patches["middle_patch"]
        for p in patch:
            x = p(x, extra_options)

    if self.attn2 is not None:
        n = self.norm2(x)
        if self.switch_temporal_ca_to_sa:
            context_attn2 = n
        else:
            context_attn2 = context
        value_attn2 = None
        if "attn2_patch" in transformer_patches:
            patch = transformer_patches["attn2_patch"]
            value_attn2 = context_attn2
            for p in patch:
                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)

        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
        block_attn2 = transformer_block
        if block_attn2 not in attn2_replace_patch:
            block_attn2 = block

        if block_attn2 in attn2_replace_patch:
            if value_attn2 is None:
                value_attn2 = context_attn2
            n = self.attn2.to_q(n)
            context_attn2 = self.attn2.to_k(context_attn2)
            value_attn2 = self.attn2.to_v(value_attn2)
            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
            n = self.attn2.to_out(n)
        else:
            n = self.attn2(n, context=context_attn2, value=value_attn2)

    if "attn2_output_patch" in transformer_patches:
        patch = transformer_patches["attn2_output_patch"]
        for p in patch:
            n = p(n, extra_options)

    x += n
    if self.is_res:
        x_skip = x
    x = self.ff(self.norm3(x))
    if self.is_res:
        x += x_skip

    return x


class RefTimestepEmbedSequential(openaimodel.TimestepEmbedSequential):
    injection_holder: InjectionTimestepEmbedSequentialHolder = None

def forward_timestep_embed_ref_inject_factory(orig_timestep_embed_inject_factory: Callable):
    def forward_timestep_embed_ref_inject(*args, **kwargs):
        ts: RefTimestepEmbedSequential = args[0]
        if not hasattr(ts, "injection_holder"):
            return orig_timestep_embed_inject_factory(*args, **kwargs)
        eps = 1e-6
        x: Tensor = orig_timestep_embed_inject_factory(*args, **kwargs)
        y: Tensor = None
        transformer_options: dict[str] = args[4]
        # Reference CN stuff
        uc_idx_mask = transformer_options.get(REF_UNCOND_IDXS, [])
        c_idx_mask = transformer_options.get(REF_COND_IDXS, [])
        # WRITE mode will only have one ReferenceAdvanced, other modes will have all ReferenceAdvanced
        ref_controlnets: list[ReferenceAdvanced] = transformer_options.get(REF_ADAIN_CONTROL_LIST, None)
        ref_machine_state: str = transformer_options.get(REF_ADAIN_MACHINE_STATE, None)
        
        # if in WRITE mode, save var, mean, and style_cfg
        if ref_machine_state == MachineState.WRITE:
            if ref_controlnets[0].ref_opts.adain_ref_weight > ts.injection_holder.gn_weight:
                var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
                ts.injection_holder.bank_styles.var_bank.append(var)
                ts.injection_holder.bank_styles.mean_bank.append(mean)
                ts.injection_holder.bank_styles.style_cfgs.append(ref_controlnets[0].ref_opts.adain_style_fidelity)
                ts.injection_holder.bank_styles.cn_idx.append(ref_controlnets[0].order)
        # if in READ mode, do math with saved var, mean, and style_cfg
        if ref_machine_state == MachineState.READ:
            if len(ts.injection_holder.bank_styles.var_bank) > 0:
                bank_styles = ts.injection_holder.bank_styles
                var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
                std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                y_uc = torch.zeros_like(x)
                cn_idx = 0
                for idx, order in enumerate(bank_styles.cn_idx):
                    # make sure matching ref cn is selected
                    for i in range(cn_idx, len(ref_controlnets)):
                        if ref_controlnets[i].order == order:
                            cn_idx = i
                            break
                    assert order == ref_controlnets[cn_idx].order
                    style_fidelity = bank_styles.style_cfgs[idx]
                    var_acc = bank_styles.var_bank[idx]
                    mean_acc = bank_styles.mean_bank[idx]
                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                    sub_y_uc = (((x - mean) / std) * std_acc) + mean_acc
                    if ref_controlnets[cn_idx].any_adain_strength_to_apply():
                        effective_strength = ref_controlnets[cn_idx].get_effective_adain_mask_or_float(x=x)
                        sub_y_uc = sub_y_uc * effective_strength + x * (1-effective_strength)
                    y_uc += sub_y_uc
                # get average, if more than one
                if len(bank_styles.cn_idx) > 1:
                    y_uc /= len(bank_styles.cn_idx)
                y_c = y_uc.clone()
                if len(uc_idx_mask) > 0 and not math.isclose(style_fidelity, 0.0):
                    y_c[uc_idx_mask] = x.to(y_c.dtype)[uc_idx_mask]
                y = style_fidelity * y_c + (1.0 - style_fidelity) * y_uc
            ts.injection_holder.bank_styles.clean()

        if y is None:
            y = x
        return y.to(x.dtype)

    return forward_timestep_embed_ref_inject

# DFS Search for Torch.nn.Module, Written by Lvmin
def torch_dfs(model: torch.nn.Module):
    result = [model]
    for child in model.children():
        result += torch_dfs(child)
    return result