File size: 11,252 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
# basically, all the LLLite core code is from there, which I then combined with
# Advanced-ControlNet features and QoL
import math
from typing import Union
from torch import Tensor
import torch
import os

import comfy.utils
from comfy.controlnet import ControlBase

from .logger import logger
from .utils import AdvancedControlBase, deepcopy_with_sharing, prepare_mask_batch


def extra_options_to_module_prefix(extra_options):
    # extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}

    # block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
    #   ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
    # transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
    # block_index is: 0-1 or 0-9, depends on the block
    # input 7 and 8, middle has 10 blocks

    # make module name from extra_options
    block = extra_options["block"]
    block_index = extra_options["block_index"]
    if block[0] == "input":
        module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
    elif block[0] == "middle":
        module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
    elif block[0] == "output":
        module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
    else:
        raise Exception(f"ControlLLLite: invalid block name '{block[0]}'. Expected 'input', 'middle', or 'output'.")
    return module_pfx


class LLLitePatch:
    ATTN1 = "attn1"
    ATTN2 = "attn2"
    def __init__(self, modules: dict[str, 'LLLiteModule'], patch_type: str, control: Union[AdvancedControlBase, ControlBase]=None):
        self.modules = modules
        self.control = control
        self.patch_type = patch_type
        #logger.error(f"create LLLitePatch: {id(self)},{control}")
    
    def __call__(self, q, k, v, extra_options):
        #logger.error(f"in __call__: {id(self)}")
        # determine if have anything to run
        if self.control.timestep_range is not None:
            # it turns out comparing single-value tensors to floats is extremely slow
            # a: Tensor = extra_options["sigmas"][0]
            if self.control.t > self.control.timestep_range[0] or self.control.t < self.control.timestep_range[1]:
                return q, k, v

        module_pfx = extra_options_to_module_prefix(extra_options)

        is_attn1 = q.shape[-1] == k.shape[-1]  # self attention
        if is_attn1:
            module_pfx = module_pfx + "_attn1"
        else:
            module_pfx = module_pfx + "_attn2"

        module_pfx_to_q = module_pfx + "_to_q"
        module_pfx_to_k = module_pfx + "_to_k"
        module_pfx_to_v = module_pfx + "_to_v"

        if module_pfx_to_q in self.modules:
            q = q + self.modules[module_pfx_to_q](q, self.control)
        if module_pfx_to_k in self.modules:
            k = k + self.modules[module_pfx_to_k](k, self.control)
        if module_pfx_to_v in self.modules:
            v = v + self.modules[module_pfx_to_v](v, self.control)

        return q, k, v

    def to(self, device):
        #logger.info(f"to... has control? {self.control}")
        for d in self.modules.keys():
            self.modules[d] = self.modules[d].to(device)
        return self
    
    def set_control(self, control: Union[AdvancedControlBase, ControlBase]) -> 'LLLitePatch':
        self.control = control
        return self
        #logger.error(f"set control for LLLitePatch: {id(self)}, cn: {id(control)}")

    def clone_with_control(self, control: AdvancedControlBase):
        #logger.error(f"clone-set control for LLLitePatch: {id(self)},{id(control)}")
        return LLLitePatch(self.modules, self.patch_type, control)

    def cleanup(self):
        #total_cleaned = 0
        for module in self.modules.values():
            module.cleanup()
        #    total_cleaned += 1
        #logger.info(f"cleaned modules: {total_cleaned}, {id(self)}")
        #logger.error(f"cleanup LLLitePatch: {id(self)}")

    # make sure deepcopy does not copy control, and deepcopied LLLitePatch should be assigned to control
    def __deepcopy__(self, memo):
        self.cleanup()
        to_return: LLLitePatch = deepcopy_with_sharing(self, shared_attribute_names = ['control'], memo=memo)
        #logger.warn(f"patch {id(self)} turned into {id(to_return)}")
        try:
            if self.patch_type == self.ATTN1:
                to_return.control.patch_attn1 = to_return
            elif self.patch_type == self.ATTN2:
                to_return.control.patch_attn2 = to_return
        except Exception:
            pass
        return to_return


# TODO: use comfy.ops to support fp8 properly
class LLLiteModule(torch.nn.Module):
    def __init__(
        self,
        name: str,
        is_conv2d: bool,
        in_dim: int,
        depth: int,
        cond_emb_dim: int,
        mlp_dim: int,
    ):
        super().__init__()
        self.name = name
        self.is_conv2d = is_conv2d
        self.is_first = False

        modules = []
        modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))  # to latent (from VAE) size*2
        if depth == 1:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
        elif depth == 2:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
        elif depth == 3:
            # kernel size 8 is too large, so set it to 4
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))

        self.conditioning1 = torch.nn.Sequential(*modules)

        if self.is_conv2d:
            self.down = torch.nn.Sequential(
                torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
            )
        else:
            self.down = torch.nn.Sequential(
                torch.nn.Linear(in_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim, in_dim),
            )

        self.depth = depth
        self.cond_emb = None
        self.cx_shape = None
        self.prev_batch = 0
        self.prev_sub_idxs = None

    def cleanup(self):
        del self.cond_emb
        self.cond_emb = None
        self.cx_shape = None
        self.prev_batch = 0
        self.prev_sub_idxs = None

    def forward(self, x: Tensor, control: Union[AdvancedControlBase, ControlBase]):
        mask = None
        mask_tk = None
        #logger.info(x.shape)
        if self.cond_emb is None or control.sub_idxs != self.prev_sub_idxs or x.shape[0] != self.prev_batch:
            # print(f"cond_emb is None, {self.name}")
            cond_hint = control.cond_hint.to(x.device, dtype=x.dtype)
            if control.latent_dims_div2 is not None and x.shape[-1] != 1280:
                cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div2[0] * 8, control.latent_dims_div2[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
            elif control.latent_dims_div4 is not None and x.shape[-1] == 1280:
                cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div4[0] * 8, control.latent_dims_div4[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
            cx = self.conditioning1(cond_hint)
            self.cx_shape = cx.shape
            if not self.is_conv2d:
                # reshape / b,c,h,w -> b,h*w,c
                n, c, h, w = cx.shape
                cx = cx.view(n, c, h * w).permute(0, 2, 1)
            self.cond_emb = cx
        # save prev values
        self.prev_batch = x.shape[0]
        self.prev_sub_idxs = control.sub_idxs

        cx: torch.Tensor = self.cond_emb
        # print(f"forward {self.name}, {cx.shape}, {x.shape}")

        # TODO: make masks work for conv2d (could not find any ControlLLLites at this time that use them)
        # create masks
        if not self.is_conv2d:
            n, c, h, w = self.cx_shape
            if control.mask_cond_hint is not None:
                mask = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
                mask = mask.view(mask.shape[0], 1, h * w).permute(0, 2, 1)
            if control.tk_mask_cond_hint is not None:
                mask_tk = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
                mask_tk = mask_tk.view(mask_tk.shape[0], 1, h * w).permute(0, 2, 1)

        # x in uncond/cond doubles batch size
        if x.shape[0] != cx.shape[0]:
            if self.is_conv2d:
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
            else:
                # print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
                if mask is not None:
                    mask = mask.repeat(x.shape[0] // mask.shape[0], 1, 1)
                if mask_tk is not None:
                    mask_tk = mask_tk.repeat(x.shape[0] // mask_tk.shape[0], 1, 1)

        if mask is None:
            mask = 1.0
        elif mask_tk is not None:
            mask = mask * mask_tk

        #logger.info(f"cs: {cx.shape}, x: {x.shape}, is_conv2d: {self.is_conv2d}")
        cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
        cx = self.mid(cx)
        cx = self.up(cx)
        if control.latent_keyframes is not None:
            cx = cx * control.calc_latent_keyframe_mults(x=cx, batched_number=control.batched_number)
        if control.weights is not None and control.weights.has_uncond_multiplier:
            cond_or_uncond = control.batched_number.cond_or_uncond
            actual_length = cx.size(0) // control.batched_number
            for idx, cond_type in enumerate(cond_or_uncond):
                # if uncond, set to weight's uncond_multiplier
                if cond_type == 1:
                    cx[actual_length*idx:actual_length*(idx+1)] *= control.weights.uncond_multiplier
        return cx * mask * control.strength * control._current_timestep_keyframe.strength