Spaces:
Configuration error
Configuration error
File size: 11,252 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
# basically, all the LLLite core code is from there, which I then combined with
# Advanced-ControlNet features and QoL
import math
from typing import Union
from torch import Tensor
import torch
import os
import comfy.utils
from comfy.controlnet import ControlBase
from .logger import logger
from .utils import AdvancedControlBase, deepcopy_with_sharing, prepare_mask_batch
def extra_options_to_module_prefix(extra_options):
# extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}
# block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
# ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
# transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
# block_index is: 0-1 or 0-9, depends on the block
# input 7 and 8, middle has 10 blocks
# make module name from extra_options
block = extra_options["block"]
block_index = extra_options["block_index"]
if block[0] == "input":
module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
elif block[0] == "middle":
module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
elif block[0] == "output":
module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
else:
raise Exception(f"ControlLLLite: invalid block name '{block[0]}'. Expected 'input', 'middle', or 'output'.")
return module_pfx
class LLLitePatch:
ATTN1 = "attn1"
ATTN2 = "attn2"
def __init__(self, modules: dict[str, 'LLLiteModule'], patch_type: str, control: Union[AdvancedControlBase, ControlBase]=None):
self.modules = modules
self.control = control
self.patch_type = patch_type
#logger.error(f"create LLLitePatch: {id(self)},{control}")
def __call__(self, q, k, v, extra_options):
#logger.error(f"in __call__: {id(self)}")
# determine if have anything to run
if self.control.timestep_range is not None:
# it turns out comparing single-value tensors to floats is extremely slow
# a: Tensor = extra_options["sigmas"][0]
if self.control.t > self.control.timestep_range[0] or self.control.t < self.control.timestep_range[1]:
return q, k, v
module_pfx = extra_options_to_module_prefix(extra_options)
is_attn1 = q.shape[-1] == k.shape[-1] # self attention
if is_attn1:
module_pfx = module_pfx + "_attn1"
else:
module_pfx = module_pfx + "_attn2"
module_pfx_to_q = module_pfx + "_to_q"
module_pfx_to_k = module_pfx + "_to_k"
module_pfx_to_v = module_pfx + "_to_v"
if module_pfx_to_q in self.modules:
q = q + self.modules[module_pfx_to_q](q, self.control)
if module_pfx_to_k in self.modules:
k = k + self.modules[module_pfx_to_k](k, self.control)
if module_pfx_to_v in self.modules:
v = v + self.modules[module_pfx_to_v](v, self.control)
return q, k, v
def to(self, device):
#logger.info(f"to... has control? {self.control}")
for d in self.modules.keys():
self.modules[d] = self.modules[d].to(device)
return self
def set_control(self, control: Union[AdvancedControlBase, ControlBase]) -> 'LLLitePatch':
self.control = control
return self
#logger.error(f"set control for LLLitePatch: {id(self)}, cn: {id(control)}")
def clone_with_control(self, control: AdvancedControlBase):
#logger.error(f"clone-set control for LLLitePatch: {id(self)},{id(control)}")
return LLLitePatch(self.modules, self.patch_type, control)
def cleanup(self):
#total_cleaned = 0
for module in self.modules.values():
module.cleanup()
# total_cleaned += 1
#logger.info(f"cleaned modules: {total_cleaned}, {id(self)}")
#logger.error(f"cleanup LLLitePatch: {id(self)}")
# make sure deepcopy does not copy control, and deepcopied LLLitePatch should be assigned to control
def __deepcopy__(self, memo):
self.cleanup()
to_return: LLLitePatch = deepcopy_with_sharing(self, shared_attribute_names = ['control'], memo=memo)
#logger.warn(f"patch {id(self)} turned into {id(to_return)}")
try:
if self.patch_type == self.ATTN1:
to_return.control.patch_attn1 = to_return
elif self.patch_type == self.ATTN2:
to_return.control.patch_attn2 = to_return
except Exception:
pass
return to_return
# TODO: use comfy.ops to support fp8 properly
class LLLiteModule(torch.nn.Module):
def __init__(
self,
name: str,
is_conv2d: bool,
in_dim: int,
depth: int,
cond_emb_dim: int,
mlp_dim: int,
):
super().__init__()
self.name = name
self.is_conv2d = is_conv2d
self.is_first = False
modules = []
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2
if depth == 1:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
elif depth == 2:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
elif depth == 3:
# kernel size 8 is too large, so set it to 4
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
self.conditioning1 = torch.nn.Sequential(*modules)
if self.is_conv2d:
self.down = torch.nn.Sequential(
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
)
else:
self.down = torch.nn.Sequential(
torch.nn.Linear(in_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Linear(mlp_dim, in_dim),
)
self.depth = depth
self.cond_emb = None
self.cx_shape = None
self.prev_batch = 0
self.prev_sub_idxs = None
def cleanup(self):
del self.cond_emb
self.cond_emb = None
self.cx_shape = None
self.prev_batch = 0
self.prev_sub_idxs = None
def forward(self, x: Tensor, control: Union[AdvancedControlBase, ControlBase]):
mask = None
mask_tk = None
#logger.info(x.shape)
if self.cond_emb is None or control.sub_idxs != self.prev_sub_idxs or x.shape[0] != self.prev_batch:
# print(f"cond_emb is None, {self.name}")
cond_hint = control.cond_hint.to(x.device, dtype=x.dtype)
if control.latent_dims_div2 is not None and x.shape[-1] != 1280:
cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div2[0] * 8, control.latent_dims_div2[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
elif control.latent_dims_div4 is not None and x.shape[-1] == 1280:
cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div4[0] * 8, control.latent_dims_div4[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
cx = self.conditioning1(cond_hint)
self.cx_shape = cx.shape
if not self.is_conv2d:
# reshape / b,c,h,w -> b,h*w,c
n, c, h, w = cx.shape
cx = cx.view(n, c, h * w).permute(0, 2, 1)
self.cond_emb = cx
# save prev values
self.prev_batch = x.shape[0]
self.prev_sub_idxs = control.sub_idxs
cx: torch.Tensor = self.cond_emb
# print(f"forward {self.name}, {cx.shape}, {x.shape}")
# TODO: make masks work for conv2d (could not find any ControlLLLites at this time that use them)
# create masks
if not self.is_conv2d:
n, c, h, w = self.cx_shape
if control.mask_cond_hint is not None:
mask = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
mask = mask.view(mask.shape[0], 1, h * w).permute(0, 2, 1)
if control.tk_mask_cond_hint is not None:
mask_tk = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
mask_tk = mask_tk.view(mask_tk.shape[0], 1, h * w).permute(0, 2, 1)
# x in uncond/cond doubles batch size
if x.shape[0] != cx.shape[0]:
if self.is_conv2d:
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
else:
# print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
if mask is not None:
mask = mask.repeat(x.shape[0] // mask.shape[0], 1, 1)
if mask_tk is not None:
mask_tk = mask_tk.repeat(x.shape[0] // mask_tk.shape[0], 1, 1)
if mask is None:
mask = 1.0
elif mask_tk is not None:
mask = mask * mask_tk
#logger.info(f"cs: {cx.shape}, x: {x.shape}, is_conv2d: {self.is_conv2d}")
cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
cx = self.mid(cx)
cx = self.up(cx)
if control.latent_keyframes is not None:
cx = cx * control.calc_latent_keyframe_mults(x=cx, batched_number=control.batched_number)
if control.weights is not None and control.weights.has_uncond_multiplier:
cond_or_uncond = control.batched_number.cond_or_uncond
actual_length = cx.size(0) // control.batched_number
for idx, cond_type in enumerate(cond_or_uncond):
# if uncond, set to weight's uncond_multiplier
if cond_type == 1:
cx[actual_length*idx:actual_length*(idx+1)] *= control.weights.uncond_multiplier
return cx * mask * control.strength * control._current_timestep_keyframe.strength
|