File size: 11,154 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import numpy as np
from torch import Tensor

import folder_paths
from comfy.model_patcher import ModelPatcher

from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet
from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, BIGMAX
from .nodes_weight import (DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights, SoftControlNetWeights, CustomControlNetWeights,
    SoftT2IAdapterWeights, CustomT2IAdapterWeights)
from .nodes_keyframes import (LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode,
                              TimestepKeyframeNode, TimestepKeyframeInterpolationNode, TimestepKeyframeFromStrengthListNode)
from .nodes_sparsectrl import SparseCtrlMergedLoaderAdvanced, SparseCtrlLoaderAdvanced, SparseIndexMethodNode, SparseSpreadMethodNode, RgbSparseCtrlPreprocessor
from .nodes_reference import ReferenceControlNetNode, ReferenceControlFinetune, ReferencePreprocessorNode
from .nodes_loosecontrol import ControlNetLoaderWithLoraAdvanced
from .nodes_deprecated import LoadImagesFromDirectory
from .logger import logger


class ControlNetLoaderAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
            },
            "optional": {
                "timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
            }
        }

    RETURN_TYPES = ("CONTROL_NET", )
    FUNCTION = "load_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def load_controlnet(self, control_net_name,
                        timestep_keyframe: TimestepKeyframeGroup=None
                        ):
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
        controlnet = load_controlnet(controlnet_path, timestep_keyframe)
        return (controlnet,)
    

class DiffControlNetLoaderAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "control_net_name": (folder_paths.get_filename_list("controlnet"), )
            },
            "optional": {
                "timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
            }
        }
    
    RETURN_TYPES = ("CONTROL_NET", )
    FUNCTION = "load_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def load_controlnet(self, control_net_name, model,
                        timestep_keyframe: TimestepKeyframeGroup=None
                        ):
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
        controlnet = load_controlnet(controlnet_path, timestep_keyframe, model)
        if is_advanced_controlnet(controlnet):
            controlnet.verify_all_weights()
        return (controlnet,)


class AdvancedControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "positive": ("CONDITIONING", ),
                "negative": ("CONDITIONING", ),
                "control_net": ("CONTROL_NET", ),
                "image": ("IMAGE", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
            },
            "optional": {
                "mask_optional": ("MASK", ),
                "timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "latent_kf_override": ("LATENT_KEYFRAME", ),
                "weights_override": ("CONTROL_NET_WEIGHTS", ),
                "model_optional": ("MODEL",),
            }
        }

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",)
    RETURN_NAMES = ("positive", "negative", "model_opt")
    FUNCTION = "apply_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
                         mask_optional: Tensor=None, model_optional: ModelPatcher=None,
                         timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
                         weights_override: ControlWeights=None):
        if strength == 0:
            return (positive, negative, model_optional)
        if model_optional:
            model_optional = model_optional.clone()

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
                    # copy, convert to advanced if needed, and set cond
                    c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent))
                    if is_advanced_controlnet(c_net):
                        # disarm node check
                        c_net.disarm()
                        # if model required, verify model is passed in, and if so patch it
                        if c_net.require_model:
                            if not model_optional:
                                raise Exception(f"Type '{type(c_net).__name__}' requires model_optional input, but got None.")
                            c_net.patch_model(model=model_optional)
                        # apply optional parameters and overrides, if provided
                        if timestep_kf is not None:
                            c_net.set_timestep_keyframes(timestep_kf)
                        if latent_kf_override is not None:
                            c_net.latent_keyframe_override = latent_kf_override
                        if weights_override is not None:
                            c_net.weights_override = weights_override
                        # verify weights are compatible
                        c_net.verify_all_weights()
                        # set cond hint mask
                        if mask_optional is not None:
                            mask_optional = mask_optional.clone()
                            # if not in the form of a batch, make it so
                            if len(mask_optional.shape) < 3:
                                mask_optional = mask_optional.unsqueeze(0)
                            c_net.set_cond_hint_mask(mask_optional)
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1], model_optional)


# NODE MAPPING
NODE_CLASS_MAPPINGS = {
    # Keyframes
    "TimestepKeyframe": TimestepKeyframeNode,
    "ACN_TimestepKeyframeInterpolation": TimestepKeyframeInterpolationNode,
    "ACN_TimestepKeyframeFromStrengthList": TimestepKeyframeFromStrengthListNode,
    "LatentKeyframe": LatentKeyframeNode,
    "LatentKeyframeTiming": LatentKeyframeInterpolationNode,
    "LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
    "LatentKeyframeGroup": LatentKeyframeGroupNode,
    # Conditioning
    "ACN_AdvancedControlNetApply": AdvancedControlNetApply,
    # Loaders
    "ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
    "DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
    # Weights
    "ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
    "ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
    "SoftControlNetWeights": SoftControlNetWeights,
    "CustomControlNetWeights": CustomControlNetWeights,
    "SoftT2IAdapterWeights": SoftT2IAdapterWeights,
    "CustomT2IAdapterWeights": CustomT2IAdapterWeights,
    "ACN_DefaultUniversalWeights": DefaultWeights,
    # SparseCtrl
    "ACN_SparseCtrlRGBPreprocessor": RgbSparseCtrlPreprocessor,
    "ACN_SparseCtrlLoaderAdvanced": SparseCtrlLoaderAdvanced,
    "ACN_SparseCtrlMergedLoaderAdvanced": SparseCtrlMergedLoaderAdvanced,
    "ACN_SparseCtrlIndexMethodNode": SparseIndexMethodNode,
    "ACN_SparseCtrlSpreadMethodNode": SparseSpreadMethodNode,
    # Reference
    "ACN_ReferencePreprocessor": ReferencePreprocessorNode,
    "ACN_ReferenceControlNet": ReferenceControlNetNode,
    "ACN_ReferenceControlNetFinetune": ReferenceControlFinetune,
    # LOOSEControl
    #"ACN_ControlNetLoaderWithLoraAdvanced": ControlNetLoaderWithLoraAdvanced,
    # Deprecated
    "LoadImagesFromDirectory": LoadImagesFromDirectory,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    # Keyframes
    "TimestepKeyframe": "Timestep Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_TimestepKeyframeInterpolation": "Timestep Keyframe Interpolation πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_TimestepKeyframeFromStrengthList": "Timestep Keyframe From List πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframe": "Latent Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframeTiming": "Latent Keyframe Interpolation πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframeBatchedGroup": "Latent Keyframe From List πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframeGroup": "Latent Keyframe Group πŸ›‚πŸ…πŸ…’πŸ…",
    # Conditioning
    "ACN_AdvancedControlNetApply": "Apply Advanced ControlNet πŸ›‚πŸ…πŸ…’πŸ…",
    # Loaders
    "ControlNetLoaderAdvanced": "Load Advanced ControlNet Model πŸ›‚πŸ…πŸ…’πŸ…",
    "DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) πŸ›‚πŸ…πŸ…’πŸ…",
    # Weights
    "ScaledSoftControlNetWeights": "Scaled Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "SoftControlNetWeights": "ControlNet Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "CustomControlNetWeights": "ControlNet Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "SoftT2IAdapterWeights": "T2IAdapter Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "CustomT2IAdapterWeights": "T2IAdapter Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_DefaultUniversalWeights": "Force Default Weights πŸ›‚πŸ…πŸ…’πŸ…",
    # SparseCtrl
    "ACN_SparseCtrlRGBPreprocessor": "RGB SparseCtrl πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_SparseCtrlLoaderAdvanced": "Load SparseCtrl Model πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_SparseCtrlMergedLoaderAdvanced": "πŸ§ͺLoad Merged SparseCtrl Model πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_SparseCtrlIndexMethodNode": "SparseCtrl Index Method πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_SparseCtrlSpreadMethodNode": "SparseCtrl Spread Method πŸ›‚πŸ…πŸ…’πŸ…",
    # Reference
    "ACN_ReferencePreprocessor": "Reference Preproccessor πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_ReferenceControlNet": "Reference ControlNet πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_ReferenceControlNetFinetune": "Reference ControlNet (Finetune) πŸ›‚πŸ…πŸ…’πŸ…",
    # LOOSEControl
    #"ACN_ControlNetLoaderWithLoraAdvanced": "Load Adv. ControlNet Model w/ LoRA πŸ›‚πŸ…πŸ…’πŸ…",
    # Deprecated
    "LoadImagesFromDirectory": "🚫Load Images [DEPRECATED] πŸ›‚πŸ…πŸ…’πŸ…",
}