Spaces:
Configuration error
Configuration error
File size: 12,825 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import torch
import math
import comfy.supported_models_base
import comfy.latent_formats
import comfy.model_patcher
import comfy.model_base
import comfy.utils
import comfy.conds
from comfy import model_management
from .diffusers_convert import convert_state_dict
# checkpointbf
class EXM_PixArt(comfy.supported_models_base.BASE):
unet_config = {}
unet_extra_config = {}
latent_format = comfy.latent_formats.SD15
def __init__(self, model_conf):
self.model_target = model_conf.get("target")
self.unet_config = model_conf.get("unet_config", {})
self.sampling_settings = model_conf.get("sampling_settings", {})
self.latent_format = self.latent_format()
# UNET is handled by extension
self.unet_config["disable_unet_model_creation"] = True
def model_type(self, state_dict, prefix=""):
return comfy.model_base.ModelType.EPS
class EXM_PixArt_Model(comfy.model_base.BaseModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
img_hw = kwargs.get("img_hw", None)
if img_hw is not None:
out["img_hw"] = comfy.conds.CONDRegular(torch.tensor(img_hw))
aspect_ratio = kwargs.get("aspect_ratio", None)
if aspect_ratio is not None:
out["aspect_ratio"] = comfy.conds.CONDRegular(torch.tensor(aspect_ratio))
cn_hint = kwargs.get("cn_hint", None)
if cn_hint is not None:
out["cn_hint"] = comfy.conds.CONDRegular(cn_hint)
return out
def load_pixart(model_path, model_conf=None):
state_dict = comfy.utils.load_torch_file(model_path)
state_dict = state_dict.get("model", state_dict)
# prefix
for prefix in ["model.diffusion_model.", ]:
if any(True for x in state_dict if x.startswith(prefix)):
state_dict = {k[len(prefix):]: v for k, v in state_dict.items()}
# diffusers
if "adaln_single.linear.weight" in state_dict:
state_dict = convert_state_dict(state_dict) # Diffusers
# guess auto config
if model_conf is None:
model_conf = guess_pixart_config(state_dict)
parameters = comfy.utils.calculate_parameters(state_dict)
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
# ignore fp8/etc and use directly for now
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype:
print(f"PixArt: falling back to {manual_cast_dtype}")
unet_dtype = manual_cast_dtype
model_conf = EXM_PixArt(model_conf) # convert to object
model = EXM_PixArt_Model( # same as comfy.model_base.BaseModel
model_conf,
model_type=comfy.model_base.ModelType.EPS,
device=model_management.get_torch_device()
)
if model_conf.model_target == "PixArtMS":
from .models.PixArtMS import PixArtMS
model.diffusion_model = PixArtMS(**model_conf.unet_config)
elif model_conf.model_target == "PixArt":
from .models.PixArt import PixArt
model.diffusion_model = PixArt(**model_conf.unet_config)
elif model_conf.model_target == "PixArtMSSigma":
from .models.PixArtMS import PixArtMS
model.diffusion_model = PixArtMS(**model_conf.unet_config)
model.latent_format = comfy.latent_formats.SDXL()
elif model_conf.model_target == "ControlPixArtMSHalf":
from .models.PixArtMS import PixArtMS
from .models.pixart_controlnet import ControlPixArtMSHalf
model.diffusion_model = PixArtMS(**model_conf.unet_config)
model.diffusion_model = ControlPixArtMSHalf(model.diffusion_model)
elif model_conf.model_target == "ControlPixArtHalf":
from .models.PixArt import PixArt
from .models.pixart_controlnet import ControlPixArtHalf
model.diffusion_model = PixArt(**model_conf.unet_config)
model.diffusion_model = ControlPixArtHalf(model.diffusion_model)
else:
raise NotImplementedError(f"Unknown model target '{model_conf.model_target}'")
m, u = model.diffusion_model.load_state_dict(state_dict, strict=False)
if len(m) > 0: print("Missing UNET keys", m)
if len(u) > 0: print("Leftover UNET keys", u)
model.diffusion_model.dtype = unet_dtype
model.diffusion_model.eval()
model.diffusion_model.to(unet_dtype)
model_patcher = comfy.model_patcher.ModelPatcher(
model,
load_device=load_device,
offload_device=offload_device,
)
return model_patcher
def guess_pixart_config(sd):
"""
Guess config based on converted state dict.
"""
# Shared settings based on DiT_XL_2 - could be enumerated
config = {
"num_heads": 16, # get from attention
"patch_size": 2, # final layer I guess?
"hidden_size": 1152, # pos_embed.shape[2]
}
config["depth"] = sum([key.endswith(".attn.proj.weight") for key in sd.keys()]) or 28
try:
# this is not present in the diffusers version for sigma?
config["model_max_length"] = sd["y_embedder.y_embedding"].shape[0]
except KeyError:
# need better logic to guess this
config["model_max_length"] = 300
if "pos_embed" in sd:
config["input_size"] = int(math.sqrt(sd["pos_embed"].shape[1])) * config["patch_size"]
config["pe_interpolation"] = config["input_size"] // (512 // 8) # dumb guess
target_arch = "PixArtMS"
if config["model_max_length"] == 300:
# Sigma
target_arch = "PixArtMSSigma"
config["micro_condition"] = False
if "input_size" not in config:
# The diffusers weights for 1K/2K are exactly the same...?
# replace patch embed logic with HyDiT?
print(f"PixArt: diffusers weights - 2K model will be broken, use manual loading!")
config["input_size"] = 1024 // 8
else:
# Alpha
if "csize_embedder.mlp.0.weight" in sd:
# MS (microconds)
target_arch = "PixArtMS"
config["micro_condition"] = True
if "input_size" not in config:
config["input_size"] = 1024 // 8
config["pe_interpolation"] = 2
else:
# PixArt
target_arch = "PixArt"
if "input_size" not in config:
config["input_size"] = 512 // 8
config["pe_interpolation"] = 1
print("PixArt guessed config:", target_arch, config)
return {
"target": target_arch,
"unet_config": config,
"sampling_settings": {
"beta_schedule": "sqrt_linear",
"linear_start": 0.0001,
"linear_end": 0.02,
"timesteps": 1000,
}
}
# lora
class EXM_PixArt_ModelPatcher(comfy.model_patcher.ModelPatcher):
def calculate_weight(self, patches, weight, key):
"""
This is almost the same as the comfy function, but stripped down to just the LoRA patch code.
The problem with the original code is the q/k/v keys being combined into one for the attention.
In the diffusers code, they're treated as separate keys, but in the reference code they're recombined (q+kv|qkv).
This means, for example, that the [1152,1152] weights become [3456,1152] in the state dict.
The issue with this is that the LoRA weights are [128,1152],[1152,128] and become [384,1162],[3456,128] instead.
This is the best thing I could think of that would fix that, but it's very fragile.
- Check key shape to determine if it needs the fallback logic
- Cut the input into parts based on the shape (undoing the torch.cat)
- Do the matrix multiplication logic
- Recombine them to match the expected shape
"""
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key),)
if len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "lora":
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
try:
mat1 = mat1.flatten(start_dim=1)
mat2 = mat2.flatten(start_dim=1)
ch1 = mat1.shape[0] // mat2.shape[1]
ch2 = mat2.shape[0] // mat1.shape[1]
### Fallback logic for shape mismatch ###
if mat1.shape[0] != mat2.shape[1] and ch1 == ch2 and (mat1.shape[0] / mat2.shape[1]) % 1 == 0:
mat1 = mat1.chunk(ch1, dim=0)
mat2 = mat2.chunk(ch1, dim=0)
weight += torch.cat(
[alpha * torch.mm(mat1[x], mat2[x]) for x in range(ch1)],
dim=0,
).reshape(weight.shape).type(weight.dtype)
else:
weight += (alpha * torch.mm(mat1, mat2)).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
return weight
def clone(self):
n = EXM_PixArt_ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device,
weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
return n
def replace_model_patcher(model):
n = EXM_PixArt_ModelPatcher(
model=model.model,
size=model.size,
load_device=model.load_device,
offload_device=model.offload_device,
current_device=model.current_device,
weight_inplace_update=model.weight_inplace_update,
)
n.patches = {}
for k in model.patches:
n.patches[k] = model.patches[k][:]
n.object_patches = model.object_patches.copy()
n.model_options = copy.deepcopy(model.model_options)
return n
def find_peft_alpha(path):
def load_json(json_path):
with open(json_path) as f:
data = json.load(f)
alpha = data.get("lora_alpha")
alpha = alpha or data.get("alpha")
if not alpha:
print(" Found config but `lora_alpha` is missing!")
else:
print(f" Found config at {json_path} [alpha:{alpha}]")
return alpha
# For some weird reason peft doesn't include the alpha in the actual model
print("PixArt: Warning! This is a PEFT LoRA. Trying to find config...")
files = [
f"{os.path.splitext(path)[0]}.json",
f"{os.path.splitext(path)[0]}.config.json",
os.path.join(os.path.dirname(path), "adapter_config.json"),
]
for file in files:
if os.path.isfile(file):
return load_json(file)
print(" Missing config/alpha! assuming alpha of 8. Consider converting it/adding a config json to it.")
return 8.0
def load_pixart_lora(model, lora, lora_path, strength):
k_back = lambda x: x.replace(".lora_up.weight", "")
# need to convert the actual weights for this to work.
if any(True for x in lora.keys() if x.endswith("adaln_single.linear.lora_A.weight")):
lora = convert_lora_state_dict(lora, peft=True)
alpha = find_peft_alpha(lora_path)
lora.update({f"{k_back(x)}.alpha": torch.tensor(alpha) for x in lora.keys() if "lora_up" in x})
else: # OneTrainer
lora = convert_lora_state_dict(lora, peft=False)
key_map = {k_back(x): f"diffusion_model.{k_back(x)}.weight" for x in lora.keys() if "lora_up" in x} # fake
loaded = comfy.lora.load_lora(lora, key_map)
if model is not None:
# switch to custom model patcher when using LoRAs
if isinstance(model, EXM_PixArt_ModelPatcher):
new_modelpatcher = model.clone()
else:
new_modelpatcher = replace_model_patcher(model)
k = new_modelpatcher.add_patches(loaded, strength)
else:
k = ()
new_modelpatcher = None
k = set(k)
for x in loaded:
if (x not in k):
print("NOT LOADED", x)
return new_modelpatcher |