Spaces:
Configuration error
Configuration error
File size: 6,191 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
import base64
import torch
import numpy as np
from enum import Enum
from PIL import Image
from io import BytesIO
from typing import List, Union
import folder_paths
from .utils import install_package
# PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# np to Tensor
def np2tensor(img_np: Union[np.ndarray, List[np.ndarray]]) -> torch.Tensor:
if isinstance(img_np, list):
return torch.cat([np2tensor(img) for img in img_np], dim=0)
return torch.from_numpy(img_np.astype(np.float32) / 255.0).unsqueeze(0)
# Tensor to np
def tensor2np(tensor: torch.Tensor) -> List[np.ndarray]:
if len(tensor.shape) == 3: # Single image
return np.clip(255.0 * tensor.cpu().numpy(), 0, 255).astype(np.uint8)
else: # Batch of images
return [np.clip(255.0 * t.cpu().numpy(), 0, 255).astype(np.uint8) for t in tensor]
def pil2byte(pil_image, format='PNG'):
byte_arr = BytesIO()
pil_image.save(byte_arr, format=format)
byte_arr.seek(0)
return byte_arr
def image2base64(image_base64):
image_bytes = base64.b64decode(image_base64)
image_data = Image.open(BytesIO(image_bytes))
return image_data
# Get new bounds
def get_new_bounds(width, height, left, right, top, bottom):
"""Returns the new bounds for an image with inset crop data."""
left = 0 + left
right = width - right
top = 0 + top
bottom = height - bottom
return (left, right, top, bottom)
def RGB2RGBA(image: Image, mask: Image) -> Image:
(R, G, B) = image.convert('RGB').split()
return Image.merge('RGBA', (R, G, B, mask.convert('L')))
def image2mask(image: Image) -> torch.Tensor:
_image = image.convert('RGBA')
alpha = _image.split()[0]
bg = Image.new("L", _image.size)
_image = Image.merge('RGBA', (bg, bg, bg, alpha))
ret_mask = torch.tensor([pil2tensor(_image)[0, :, :, 3].tolist()])
return ret_mask
def mask2image(mask: torch.Tensor) -> Image:
masks = tensor2np(mask)
for m in masks:
_mask = Image.fromarray(m).convert("L")
_image = Image.new("RGBA", _mask.size, color='white')
_image = Image.composite(
_image, Image.new("RGBA", _mask.size, color='black'), _mask)
return _image
# 图像融合
class blendImage:
def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1),
img1 + (2 * img2 - 1) * (self.g(img1) - img1))
elif mode == "difference":
return img1 - img2
else:
raise ValueError(f"Unsupported blend mode: {mode}")
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str = 'normal'):
image2 = image2.to(image1.device)
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic',
crop='center')
image2 = image2.permute(0, 2, 3, 1)
blended_image = self.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return blended_image
class ResizeMode(Enum):
RESIZE = "Just Resize"
INNER_FIT = "Crop and Resize"
OUTER_FIT = "Resize and Fill"
def int_value(self):
if self == ResizeMode.RESIZE:
return 0
elif self == ResizeMode.INNER_FIT:
return 1
elif self == ResizeMode.OUTER_FIT:
return 2
assert False, "NOTREACHED"
# CLIP反推
import comfy.utils
from torchvision import transforms
Config, Interrogator = None, None
class CI_Inference:
ci_model = None
cache_path: str
def __init__(self):
self.ci_model = None
self.low_vram = False
self.cache_path = os.path.join(folder_paths.models_dir, "clip_interrogator")
def _load_model(self, model_name, low_vram=False):
if not (self.ci_model and model_name == self.ci_model.config.clip_model_name and self.low_vram == low_vram):
self.low_vram = low_vram
print(f"Load model: {model_name}")
config = Config(
device="cuda" if torch.cuda.is_available() else "cpu",
download_cache=True,
clip_model_name=model_name,
clip_model_path=self.cache_path,
cache_path=self.cache_path,
caption_model_name='blip-large'
)
if low_vram:
config.apply_low_vram_defaults()
self.ci_model = Interrogator(config)
def _interrogate(self, image, mode, caption=None):
if mode == 'best':
prompt = self.ci_model.interrogate(image, caption=caption)
elif mode == 'classic':
prompt = self.ci_model.interrogate_classic(image, caption=caption)
elif mode == 'fast':
prompt = self.ci_model.interrogate_fast(image, caption=caption)
elif mode == 'negative':
prompt = self.ci_model.interrogate_negative(image)
else:
raise Exception(f"Unknown mode {mode}")
return prompt
def image_to_prompt(self, image, mode, model_name='ViT-L-14/openai', low_vram=False):
try:
from clip_interrogator import Config, Interrogator
global Config, Interrogator
except:
install_package("clip_interrogator", "0.6.0")
from clip_interrogator import Config, Interrogator
pbar = comfy.utils.ProgressBar(len(image))
self._load_model(model_name, low_vram)
prompt = []
for i in range(len(image)):
im = image[i]
im = tensor2pil(im)
im = im.convert('RGB')
_prompt = self._interrogate(im, mode)
pbar.update(1)
prompt.append(_prompt)
return prompt
ci = CI_Inference()
|