Spaces:
Configuration error
Configuration error
File size: 27,452 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import re, time, os, psutil
import folder_paths
import comfy.utils
import comfy.sd
import comfy.controlnet
from comfy.model_patcher import ModelPatcher
from nodes import NODE_CLASS_MAPPINGS
from collections import defaultdict
from .log import log_node_info, log_node_error
from ..dit.pixArt.loader import load_pixart
stable_diffusion_loaders = ["easy fullLoader", "easy a1111Loader", "easy comfyLoader", "easy hunyuanDiTLoader","easy zero123Loader", "easy svdLoader"]
stable_cascade_loaders = ["easy cascadeLoader"]
dit_loaders = ['easy pixArtLoader']
controlnet_loaders = ["easy controlnetLoader", "easy controlnetLoaderADV"]
instant_loaders = ["easy instantIDApply", "easy instantIDApplyADV"]
cascade_vae_node = ["easy preSamplingCascade", "easy fullCascadeKSampler"]
model_merge_node = ["easy XYInputs: ModelMergeBlocks"]
lora_widget = ["easy fullLoader", "easy a1111Loader", "easy comfyLoader"]
class easyLoader:
def __init__(self):
self.loaded_objects = {
"ckpt": defaultdict(tuple), # {ckpt_name: (model, ...)}
"unet": defaultdict(tuple),
"clip": defaultdict(tuple),
"clip_vision": defaultdict(tuple),
"bvae": defaultdict(tuple),
"vae": defaultdict(object),
"lora": defaultdict(dict), # {lora_name: {UID: (model_lora, clip_lora)}}
"controlnet": defaultdict(dict),
"t5": defaultdict(tuple),
"chatglm3": defaultdict(tuple),
}
self.memory_threshold = self.determine_memory_threshold(0.7)
self.lora_name_cache = []
def clean_values(self, values: str):
original_values = values.split("; ")
cleaned_values = []
for value in original_values:
cleaned_value = value.strip(';').strip()
if cleaned_value == "":
continue
try:
cleaned_value = int(cleaned_value)
except ValueError:
try:
cleaned_value = float(cleaned_value)
except ValueError:
pass
cleaned_values.append(cleaned_value)
return cleaned_values
def clear_unused_objects(self, desired_names: set, object_type: str):
keys = set(self.loaded_objects[object_type].keys())
for key in keys - desired_names:
del self.loaded_objects[object_type][key]
def get_input_value(self, entry, key, prompt=None):
val = entry["inputs"][key]
if isinstance(val, str):
return val
elif isinstance(val, list):
if prompt is not None and val[0]:
return prompt[val[0]]['inputs'][key]
else:
return val[0]
else:
return str(val)
def process_pipe_loader(self, entry, desired_ckpt_names, desired_vae_names, desired_lora_names, desired_lora_settings, num_loras=3, suffix=""):
for idx in range(1, num_loras + 1):
lora_name_key = f"{suffix}lora{idx}_name"
desired_lora_names.add(self.get_input_value(entry, lora_name_key))
setting = f'{self.get_input_value(entry, lora_name_key)};{entry["inputs"][f"{suffix}lora{idx}_model_strength"]};{entry["inputs"][f"{suffix}lora{idx}_clip_strength"]}'
desired_lora_settings.add(setting)
desired_ckpt_names.add(self.get_input_value(entry, f"{suffix}ckpt_name"))
desired_vae_names.add(self.get_input_value(entry, f"{suffix}vae_name"))
def update_loaded_objects(self, prompt):
desired_ckpt_names = set()
desired_unet_names = set()
desired_clip_names = set()
desired_vae_names = set()
desired_lora_names = set()
desired_lora_settings = set()
desired_controlnet_names = set()
desired_t5_names = set()
desired_glm3_names = set()
for entry in prompt.values():
class_type = entry["class_type"]
if class_type in lora_widget:
lora_name = self.get_input_value(entry, "lora_name")
desired_lora_names.add(lora_name)
setting = f'{lora_name};{entry["inputs"]["lora_model_strength"]};{entry["inputs"]["lora_clip_strength"]}'
desired_lora_settings.add(setting)
if class_type in stable_diffusion_loaders:
desired_ckpt_names.add(self.get_input_value(entry, "ckpt_name", prompt))
desired_vae_names.add(self.get_input_value(entry, "vae_name"))
elif class_type in ['easy kolorsLoader']:
desired_unet_names.add(self.get_input_value(entry, "unet_name"))
desired_vae_names.add(self.get_input_value(entry, "vae_name"))
desired_glm3_names.add(self.get_input_value(entry, "chatglm3_name"))
elif class_type in dit_loaders:
t5_name = self.get_input_value(entry, "mt5_name") if "mt5_name" in entry["inputs"] else None
clip_name = self.get_input_value(entry, "clip_name") if "clip_name" in entry["inputs"] else None
model_name = self.get_input_value(entry, "model_name")
ckpt_name = self.get_input_value(entry, "ckpt_name", prompt)
if t5_name:
desired_t5_names.add(t5_name)
if clip_name:
desired_clip_names.add(clip_name)
desired_ckpt_names.add(ckpt_name+'_'+model_name)
elif class_type in stable_cascade_loaders:
desired_unet_names.add(self.get_input_value(entry, "stage_c"))
desired_unet_names.add(self.get_input_value(entry, "stage_b"))
desired_clip_names.add(self.get_input_value(entry, "clip_name"))
desired_vae_names.add(self.get_input_value(entry, "stage_a"))
elif class_type in cascade_vae_node:
encode_vae_name = self.get_input_value(entry, "encode_vae_name")
decode_vae_name = self.get_input_value(entry, "decode_vae_name")
if encode_vae_name and encode_vae_name != 'None':
desired_vae_names.add(encode_vae_name)
if decode_vae_name and decode_vae_name != 'None':
desired_vae_names.add(decode_vae_name)
elif class_type in controlnet_loaders:
control_net_name = self.get_input_value(entry, "control_net_name", prompt)
scale_soft_weights = self.get_input_value(entry, "scale_soft_weights")
desired_controlnet_names.add(f'{control_net_name};{scale_soft_weights}')
elif class_type in instant_loaders:
control_net_name = self.get_input_value(entry, "control_net_name", prompt)
scale_soft_weights = self.get_input_value(entry, "cn_soft_weights")
desired_controlnet_names.add(f'{control_net_name};{scale_soft_weights}')
elif class_type in model_merge_node:
desired_ckpt_names.add(self.get_input_value(entry, "ckpt_name_1"))
desired_ckpt_names.add(self.get_input_value(entry, "ckpt_name_2"))
vae_use = self.get_input_value(entry, "vae_use")
if vae_use != 'Use Model 1' and vae_use != 'Use Model 2':
desired_vae_names.add(vae_use)
object_types = ["ckpt", "unet", "clip", "bvae", "vae", "lora", "controlnet", "t5"]
for object_type in object_types:
if object_type == 'unet':
desired_names = desired_unet_names
elif object_type in ["ckpt", "clip", "bvae"]:
if object_type == 'clip':
desired_names = desired_ckpt_names.union(desired_clip_names)
else:
desired_names = desired_ckpt_names
elif object_type == "vae":
desired_names = desired_vae_names
elif object_type == "controlnet":
desired_names = desired_controlnet_names
elif object_type == "t5":
desired_names = desired_t5_names
elif object_type == "chatglm3":
desired_names = desired_glm3_names
else:
desired_names = desired_lora_names
self.clear_unused_objects(desired_names, object_type)
def add_to_cache(self, obj_type, key, value):
"""
Add an item to the cache with the current timestamp.
"""
timestamped_value = (value, time.time())
self.loaded_objects[obj_type][key] = timestamped_value
def determine_memory_threshold(self, percentage=0.8):
"""
Determines the memory threshold as a percentage of the total available memory.
Args:
- percentage (float): The fraction of total memory to use as the threshold.
Should be a value between 0 and 1. Default is 0.8 (80%).
Returns:
- memory_threshold (int): Memory threshold in bytes.
"""
total_memory = psutil.virtual_memory().total
memory_threshold = total_memory * percentage
return memory_threshold
def get_memory_usage(self):
"""
Returns the memory usage of the current process in bytes.
"""
process = psutil.Process(os.getpid())
return process.memory_info().rss
def eviction_based_on_memory(self):
"""
Evicts objects from cache based on memory usage and priority.
"""
current_memory = self.get_memory_usage()
if current_memory < self.memory_threshold:
return
eviction_order = ["vae", "lora", "bvae", "clip", "ckpt", "controlnet", "unet", "t5", "chatglm3"]
for obj_type in eviction_order:
if current_memory < self.memory_threshold:
break
# Sort items based on age (using the timestamp)
items = list(self.loaded_objects[obj_type].items())
items.sort(key=lambda x: x[1][1]) # Sorting by timestamp
for item in items:
if current_memory < self.memory_threshold:
break
del self.loaded_objects[obj_type][item[0]]
current_memory = self.get_memory_usage()
def load_checkpoint(self, ckpt_name, config_name=None, load_vision=False):
cache_name = ckpt_name
if config_name not in [None, "Default"]:
cache_name = ckpt_name + "_" + config_name
if cache_name in self.loaded_objects["ckpt"]:
clip_vision = self.loaded_objects["clip_vision"][cache_name][0] if load_vision else None
clip = self.loaded_objects["clip"][cache_name][0] if not load_vision else None
return self.loaded_objects["ckpt"][cache_name][0], clip, self.loaded_objects["bvae"][cache_name][0], clip_vision
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
output_clip = False if load_vision else True
output_clipvision = True if load_vision else False
if config_name not in [None, "Default"]:
config_path = folder_paths.get_full_path("configs", config_name)
loaded_ckpt = comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
else:
model_options = {}
if re.search("nf4", ckpt_name):
from ..bitsandbytes_NF4 import OPS
model_options = {"custom_operations": OPS}
loaded_ckpt = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=output_clip, output_clipvision=output_clipvision, embedding_directory=folder_paths.get_folder_paths("embeddings"), model_options=model_options)
self.add_to_cache("ckpt", cache_name, loaded_ckpt[0])
self.add_to_cache("bvae", cache_name, loaded_ckpt[2])
clip = loaded_ckpt[1]
clip_vision = loaded_ckpt[3]
if clip:
self.add_to_cache("clip", cache_name, clip)
if clip_vision:
self.add_to_cache("clip_vision", cache_name, clip_vision)
self.eviction_based_on_memory()
return loaded_ckpt[0], clip, loaded_ckpt[2], clip_vision
def load_vae(self, vae_name):
if vae_name in self.loaded_objects["vae"]:
return self.loaded_objects["vae"][vae_name][0]
vae_path = folder_paths.get_full_path("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
loaded_vae = comfy.sd.VAE(sd=sd)
self.add_to_cache("vae", vae_name, loaded_vae)
self.eviction_based_on_memory()
return loaded_vae
def load_unet(self, unet_name):
if unet_name in self.loaded_objects["unet"]:
log_node_info("Load UNet", f"{unet_name} cached")
return self.loaded_objects["unet"][unet_name][0]
unet_path = folder_paths.get_full_path("unet", unet_name)
model = comfy.sd.load_unet(unet_path)
self.add_to_cache("unet", unet_name, model)
self.eviction_based_on_memory()
return model
def load_controlnet(self, control_net_name, scale_soft_weights=1, use_cache=True):
unique_id = f'{control_net_name};{str(scale_soft_weights)}'
if use_cache and unique_id in self.loaded_objects["controlnet"]:
return self.loaded_objects["controlnet"][unique_id][0]
if scale_soft_weights < 1:
if "ScaledSoftControlNetWeights" in NODE_CLASS_MAPPINGS:
soft_weight_cls = NODE_CLASS_MAPPINGS['ScaledSoftControlNetWeights']
(weights, timestep_keyframe) = soft_weight_cls().load_weights(scale_soft_weights, False)
cn_adv_cls = NODE_CLASS_MAPPINGS['ControlNetLoaderAdvanced']
control_net, = cn_adv_cls().load_controlnet(control_net_name, timestep_keyframe)
else:
raise Exception(f"[Advanced-ControlNet Not Found] you need to install 'COMFYUI-Advanced-ControlNet'")
else:
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
control_net = comfy.controlnet.load_controlnet(controlnet_path)
if use_cache:
self.add_to_cache("controlnet", unique_id, control_net)
self.eviction_based_on_memory()
return control_net
def load_clip(self, clip_name, type='stable_diffusion', load_clip=None):
if clip_name in self.loaded_objects["clip"]:
return self.loaded_objects["clip"][clip_name][0]
if type == 'stable_diffusion':
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
elif type == 'stable_cascade':
clip_type = comfy.sd.CLIPType.STABLE_CASCADE
elif type == 'sd3':
clip_type = comfy.sd.CLIPType.SD3
elif type == 'flux':
clip_type = comfy.sd.CLIPType.FLUX
elif type == 'stable_audio':
clip_type = comfy.sd.CLIPType.STABLE_AUDIO
clip_path = folder_paths.get_full_path("clip", clip_name)
load_clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
self.add_to_cache("clip", clip_name, load_clip)
self.eviction_based_on_memory()
return load_clip
def load_lora(self, lora, model=None, clip=None, type=None):
lora_name = lora["lora_name"]
model = model if model is not None else lora["model"]
clip = clip if clip is not None else lora["clip"]
model_strength = lora["model_strength"]
clip_strength = lora["clip_strength"]
lbw = lora["lbw"] if "lbw" in lora else None
lbw_a = lora["lbw_a"] if "lbw_a" in lora else None
lbw_b = lora["lbw_b"] if "lbw_b" in lora else None
model_hash = str(model)[44:-1]
clip_hash = str(clip)[25:-1] if clip else ''
unique_id = f'{model_hash};{clip_hash};{lora_name};{model_strength};{clip_strength}'
if unique_id in self.loaded_objects["lora"]:
log_node_info("Load LORA",f"{lora_name} cached")
return self.loaded_objects["lora"][unique_id][0]
orig_lora_name = lora_name
lora_name = self.resolve_lora_name(lora_name)
if lora_name is not None:
lora_path = folder_paths.get_full_path("loras", lora_name)
else:
lora_path = None
if lora_path is not None:
log_node_info("Load LORA",f"{lora_name}: {model_strength}, {clip_strength}, LBW={lbw}, A={lbw_a}, B={lbw_b}")
if lbw:
lbw = lora["lbw"]
lbw_a = lora["lbw_a"]
lbw_b = lora["lbw_b"]
if 'LoraLoaderBlockWeight //Inspire' not in NODE_CLASS_MAPPINGS:
raise Exception('[InspirePack Not Found] you need to install ComfyUI-Inspire-Pack')
cls = NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire']
model, clip, _ = cls().doit(model, clip, lora_name, model_strength, clip_strength, False, 0,
lbw_a, lbw_b, "", lbw)
else:
_lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
keys = _lora.keys()
if "down_blocks.0.resnets.0.norm1.bias" in keys:
print('Using LORA for Resadapter')
key_map = {}
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
mapping_norm = {}
for key in keys:
if ".weight" in key:
key_name_in_ori_sd = key_map[key.replace(".weight", "")]
mapping_norm[key_name_in_ori_sd] = _lora[key]
elif ".bias" in key:
key_name_in_ori_sd = key_map[key.replace(".bias", "")]
mapping_norm[key_name_in_ori_sd.replace(".weight", ".bias")] = _lora[
key
]
else:
print("===>Unexpected key", key)
mapping_norm[key] = _lora[key]
for k in mapping_norm.keys():
if k not in model.model.state_dict():
print("===>Missing key:", k)
model.model.load_state_dict(mapping_norm, strict=False)
return (model, clip)
# PixArt
if type is not None and type == 'PixArt':
from ..dit.pixArt.loader import load_pixart_lora
model = load_pixart_lora(model, _lora, lora_path, model_strength)
else:
model, clip = comfy.sd.load_lora_for_models(model, clip, _lora, model_strength, clip_strength)
self.add_to_cache("lora", unique_id, (model, clip))
self.eviction_based_on_memory()
else:
log_node_error(f"LORA NOT FOUND", orig_lora_name)
return model, clip
def resolve_lora_name(self, name):
if os.path.exists(name):
return name
else:
if len(self.lora_name_cache) == 0:
loras = folder_paths.get_filename_list("loras")
self.lora_name_cache.extend(loras)
for x in self.lora_name_cache:
if x.endswith(name):
return x
# 如果刷新网页后新添加的lora走这个逻辑
log_node_info("LORA NOT IN CACHE", f"{name}")
loras = folder_paths.get_filename_list("loras")
for x in loras:
if x.endswith(name):
self.lora_name_cache.append(x)
return x
return None
def load_main(self, ckpt_name, config_name, vae_name, lora_name, lora_model_strength, lora_clip_strength, optional_lora_stack, model_override, clip_override, vae_override, prompt, nf4=False):
model: ModelPatcher | None = None
clip: comfy.sd.CLIP | None = None
vae: comfy.sd.VAE | None = None
clip_vision = None
lora_stack = []
can_load_lora = True
# 判断是否存在 模型或Lora叠加xyplot, 若存在优先缓存第一个模型
xy_model_id = next((x for x in prompt if str(prompt[x]["class_type"]) in ["easy XYInputs: ModelMergeBlocks",
"easy XYInputs: Checkpoint"]), None)
xy_lora_id = next((x for x in prompt if str(prompt[x]["class_type"]) == "easy XYInputs: Lora"), None)
if xy_lora_id is not None:
can_load_lora = False
if xy_model_id is not None:
node = prompt[xy_model_id]
if "ckpt_name_1" in node["inputs"]:
ckpt_name_1 = node["inputs"]["ckpt_name_1"]
model, clip, vae, clip_vision = self.load_checkpoint(ckpt_name_1)
can_load_lora = False
# Load models
elif model_override is not None and clip_override is not None and vae_override is not None:
model = model_override
clip = clip_override
vae = vae_override
elif model_override is not None:
raise Exception(f"[ERROR] clip or vae is missing")
elif vae_override is not None:
raise Exception(f"[ERROR] model or clip is missing")
elif clip_override is not None:
raise Exception(f"[ERROR] model or vae is missing")
else:
model, clip, vae, clip_vision = self.load_checkpoint(ckpt_name, config_name)
if optional_lora_stack is not None and can_load_lora:
for lora in optional_lora_stack:
lora = {"lora_name": lora[0], "model": model, "clip": clip, "model_strength": lora[1],
"clip_strength": lora[2]}
model, clip = self.load_lora(lora)
lora['model'] = model
lora['clip'] = clip
lora_stack.append(lora)
if lora_name != "None" and can_load_lora:
lora = {"lora_name": lora_name, "model": model, "clip": clip, "model_strength": lora_model_strength,
"clip_strength": lora_clip_strength}
model, clip = self.load_lora(lora)
lora_stack.append(lora)
# Check for custom VAE
if vae_name not in ["Baked VAE", "Baked-VAE"]:
vae = self.load_vae(vae_name)
# CLIP skip
if not clip:
raise Exception("No CLIP found")
return model, clip, vae, clip_vision, lora_stack
# Kolors
def load_kolors_unet(self, unet_name):
if unet_name in self.loaded_objects["unet"]:
log_node_info("Load Kolors UNet", f"{unet_name} cached")
return self.loaded_objects["unet"][unet_name][0]
else:
from ..kolors.loader import applyKolorsUnet
with applyKolorsUnet():
unet_path = folder_paths.get_full_path("unet", unet_name)
sd = comfy.utils.load_torch_file(unet_path)
model = comfy.sd.load_unet_state_dict(sd)
if model is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
self.add_to_cache("unet", unet_name, model)
self.eviction_based_on_memory()
return model
def load_chatglm3(self, chatglm3_name):
from ..kolors.loader import load_chatglm3
if chatglm3_name in self.loaded_objects["chatglm3"]:
log_node_info("Load ChatGLM3", f"{chatglm3_name} cached")
return self.loaded_objects["chatglm3"][chatglm3_name][0]
chatglm_model = load_chatglm3(model_path=folder_paths.get_full_path("llm", chatglm3_name))
self.add_to_cache("chatglm3", chatglm3_name, chatglm_model)
self.eviction_based_on_memory()
return chatglm_model
# DiT
def load_dit_ckpt(self, ckpt_name, model_name, **kwargs):
if (ckpt_name+'_'+model_name) in self.loaded_objects["ckpt"]:
return self.loaded_objects["ckpt"][ckpt_name+'_'+model_name][0]
model = None
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
model_type = kwargs['model_type'] if "model_type" in kwargs else 'PixArt'
if model_type == 'PixArt':
pixart_conf = kwargs['pixart_conf']
model_conf = pixart_conf[model_name]
model = load_pixart(ckpt_path, model_conf)
if model:
self.add_to_cache("ckpt", ckpt_name + '_' + model_name, model)
self.eviction_based_on_memory()
return model
def load_dit_clip(self, clip_name, **kwargs):
if clip_name in self.loaded_objects["clip"]:
return self.loaded_objects["clip"][clip_name][0]
clip_path = folder_paths.get_full_path("clip", clip_name)
sd = comfy.utils.load_torch_file(clip_path)
prefix = "bert."
state_dict = {}
for key in sd:
nkey = key
if key.startswith(prefix):
nkey = key[len(prefix):]
state_dict[nkey] = sd[key]
m, e = model.load_sd(state_dict)
if len(m) > 0 or len(e) > 0:
print(f"{clip_name}: clip missing {len(m)} keys ({len(e)} extra)")
self.add_to_cache("clip", clip_name, model)
self.eviction_based_on_memory()
return model
def load_dit_t5(self, t5_name, **kwargs):
if t5_name in self.loaded_objects["t5"]:
return self.loaded_objects["t5"][t5_name][0]
model_type = kwargs['model_type'] if "model_type" in kwargs else 'HyDiT'
if model_type == 'HyDiT':
del kwargs['model_type']
model = EXM_HyDiT_Tenc_Temp(model_class="mT5", **kwargs)
t5_path = folder_paths.get_full_path("t5", t5_name)
sd = comfy.utils.load_torch_file(t5_path)
m, e = model.load_sd(sd)
if len(m) > 0 or len(e) > 0:
print(f"{t5_name}: mT5 missing {len(m)} keys ({len(e)} extra)")
self.add_to_cache("t5", t5_name, model)
self.eviction_based_on_memory()
return model
def load_t5_from_sd3_clip(self, sd3_clip, padding):
try:
from comfy.text_encoders.sd3_clip import SD3Tokenizer, SD3ClipModel
except:
from comfy.sd3_clip import SD3Tokenizer, SD3ClipModel
import copy
clip = sd3_clip.clone()
assert clip.cond_stage_model.t5xxl is not None, "CLIP must have T5 loaded!"
# remove transformer
transformer = clip.cond_stage_model.t5xxl.transformer
clip.cond_stage_model.t5xxl.transformer = None
# clone object
tmp = SD3ClipModel(clip_l=False, clip_g=False, t5=False)
tmp.t5xxl = copy.deepcopy(clip.cond_stage_model.t5xxl)
# put transformer back
clip.cond_stage_model.t5xxl.transformer = transformer
tmp.t5xxl.transformer = transformer
# override special tokens
tmp.t5xxl.special_tokens = copy.deepcopy(clip.cond_stage_model.t5xxl.special_tokens)
tmp.t5xxl.special_tokens.pop("end") # make sure empty tokens match
# tokenizer
tok = SD3Tokenizer()
tok.t5xxl.min_length = padding
clip.cond_stage_model = tmp
clip.tokenizer = tok
return clip
|