Spaces:
Configuration error
Configuration error
File size: 13,519 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import re
import torch
import torch.nn as nn
from copy import deepcopy
from torch import Tensor
from torch.nn import Module, Linear, init
from typing import Any, Mapping
from .PixArt import PixArt, get_2d_sincos_pos_embed
from .PixArtMS import PixArtMSBlock, PixArtMS
from .utils import auto_grad_checkpoint
# The implementation of ControlNet-Half architrecture
# https://github.com/lllyasviel/ControlNet/discussions/188
class ControlT2IDitBlockHalf(Module):
def __init__(self, base_block: PixArtMSBlock, block_index: 0) -> None:
super().__init__()
self.copied_block = deepcopy(base_block)
self.block_index = block_index
for p in self.copied_block.parameters():
p.requires_grad_(True)
self.copied_block.load_state_dict(base_block.state_dict())
self.copied_block.train()
self.hidden_size = hidden_size = base_block.hidden_size
if self.block_index == 0:
self.before_proj = Linear(hidden_size, hidden_size)
init.zeros_(self.before_proj.weight)
init.zeros_(self.before_proj.bias)
self.after_proj = Linear(hidden_size, hidden_size)
init.zeros_(self.after_proj.weight)
init.zeros_(self.after_proj.bias)
def forward(self, x, y, t, mask=None, c=None):
if self.block_index == 0:
# the first block
c = self.before_proj(c)
c = self.copied_block(x + c, y, t, mask)
c_skip = self.after_proj(c)
else:
# load from previous c and produce the c for skip connection
c = self.copied_block(c, y, t, mask)
c_skip = self.after_proj(c)
return c, c_skip
# The implementation of ControlPixArtHalf net
class ControlPixArtHalf(Module):
# only support single res model
def __init__(self, base_model: PixArt, copy_blocks_num: int = 13) -> None:
super().__init__()
self.dtype = torch.get_default_dtype()
self.base_model = base_model.eval()
self.controlnet = []
self.copy_blocks_num = copy_blocks_num
self.total_blocks_num = len(base_model.blocks)
for p in self.base_model.parameters():
p.requires_grad_(False)
# Copy first copy_blocks_num block
for i in range(copy_blocks_num):
self.controlnet.append(ControlT2IDitBlockHalf(base_model.blocks[i], i))
self.controlnet = nn.ModuleList(self.controlnet)
def __getattr__(self, name: str) -> Tensor or Module:
if name in ['forward', 'forward_with_dpmsolver', 'forward_with_cfg', 'forward_c', 'load_state_dict']:
return self.__dict__[name]
elif name in ['base_model', 'controlnet']:
return super().__getattr__(name)
else:
return getattr(self.base_model, name)
def forward_c(self, c):
self.h, self.w = c.shape[-2]//self.patch_size, c.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), lewei_scale=self.lewei_scale, base_size=self.base_size)).unsqueeze(0).to(c.device).to(self.dtype)
return self.x_embedder(c) + pos_embed if c is not None else c
# def forward(self, x, t, c, **kwargs):
# return self.base_model(x, t, c=self.forward_c(c), **kwargs)
def forward_raw(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs):
# modify the original PixArtMS forward function
if c is not None:
c = c.to(self.dtype)
c = self.forward_c(c)
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
pos_embed = self.pos_embed.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep.to(x.dtype)) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# define the first layer
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward(self, x, timesteps, context, cn_hint=None, **kwargs):
"""
Forward pass that adapts comfy input to original forward function
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
timesteps: (N,) tensor of diffusion timesteps
context: (N, 1, 120, C) conditioning
cn_hint: controlnet hint
"""
## Still accepts the input w/o that dim but returns garbage
if len(context.shape) == 3:
context = context.unsqueeze(1)
## run original forward pass
out = self.forward_raw(
x = x.to(self.dtype),
timestep = timesteps.to(self.dtype),
y = context.to(self.dtype),
c = cn_hint,
)
## only return EPS
out = out.to(torch.float)
eps, rest = out[:, :self.in_channels], out[:, self.in_channels:]
return eps
def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs):
model_out = self.forward_raw(x, t, y, data_info=data_info, c=c, **kwargs)
return model_out.chunk(2, dim=1)[0]
# def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs):
# return self.base_model.forward_with_dpmsolver(x, t, y, data_info=data_info, c=self.forward_c(c), **kwargs)
def forward_with_cfg(self, x, t, y, cfg_scale, data_info, c, **kwargs):
return self.base_model.forward_with_cfg(x, t, y, cfg_scale, data_info, c=self.forward_c(c), **kwargs)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
if all((k.startswith('base_model') or k.startswith('controlnet')) for k in state_dict.keys()):
return super().load_state_dict(state_dict, strict)
else:
new_key = {}
for k in state_dict.keys():
new_key[k] = re.sub(r"(blocks\.\d+)(.*)", r"\1.base_block\2", k)
for k, v in new_key.items():
if k != v:
print(f"replace {k} to {v}")
state_dict[v] = state_dict.pop(k)
return self.base_model.load_state_dict(state_dict, strict)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
assert self.h * self.w == x.shape[1]
x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p))
return imgs
# @property
# def dtype(self):
## 返回模型参数的数据类型
# return next(self.parameters()).dtype
# The implementation for PixArtMS_Half + 1024 resolution
class ControlPixArtMSHalf(ControlPixArtHalf):
# support multi-scale res model (multi-scale model can also be applied to single reso training & inference)
def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)
def forward_raw(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs):
# modify the original PixArtMS forward function
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
if c is not None:
c = c.to(self.dtype)
c = self.forward_c(c)
bs = x.shape[0]
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), lewei_scale=self.lewei_scale, base_size=self.base_size)).unsqueeze(0).to(x.device).to(self.dtype)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep) # (N, D)
csize = self.csize_embedder(c_size, bs) # (N, D)
ar = self.ar_embedder(ar, bs) # (N, D)
t = t + torch.cat([csize, ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# define the first layer
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward(self, x, timesteps, context, img_hw=None, aspect_ratio=None, cn_hint=None, **kwargs):
"""
Forward pass that adapts comfy input to original forward function
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
timesteps: (N,) tensor of diffusion timesteps
context: (N, 1, 120, C) conditioning
img_hw: height|width conditioning
aspect_ratio: aspect ratio conditioning
cn_hint: controlnet hint
"""
## size/ar from cond with fallback based on the latent image shape.
bs = x.shape[0]
data_info = {}
if img_hw is None:
data_info["img_hw"] = torch.tensor(
[[x.shape[2]*8, x.shape[3]*8]],
dtype=self.dtype,
device=x.device
).repeat(bs, 1)
else:
data_info["img_hw"] = img_hw.to(x.dtype)
if aspect_ratio is None or True:
data_info["aspect_ratio"] = torch.tensor(
[[x.shape[2]/x.shape[3]]],
dtype=self.dtype,
device=x.device
).repeat(bs, 1)
else:
data_info["aspect_ratio"] = aspect_ratio.to(x.dtype)
## Still accepts the input w/o that dim but returns garbage
if len(context.shape) == 3:
context = context.unsqueeze(1)
## run original forward pass
out = self.forward_raw(
x = x.to(self.dtype),
timestep = timesteps.to(self.dtype),
y = context.to(self.dtype),
c = cn_hint,
data_info=data_info,
)
## only return EPS
out = out.to(torch.float)
eps, rest = out[:, :self.in_channels], out[:, self.in_channels:]
return eps
|