File size: 13,795 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import math
import torch
import numpy as np
from torch import nn
from typing import Callable, Iterable, Union, Optional
from einops import rearrange, repeat

from comfy import model_management
from .kl import (
	Encoder, Decoder, Upsample, Normalize,
	AttnBlock, ResnetBlock, #MemoryEfficientAttnBlock, 
	DiagonalGaussianDistribution, nonlinearity, make_attn
)

class AutoencoderKL(nn.Module):
	def __init__(self, config):
		super().__init__()
		self.embed_dim = config["embed_dim"]
		self.encoder = Encoder(**config)
		self.decoder = VideoDecoder(**config)
		assert config["double_z"]
		# these aren't used here for some reason
		# self.quant_conv = torch.nn.Conv2d(2*config["z_channels"], 2*self.embed_dim, 1)
		# self.post_quant_conv = torch.nn.Conv2d(self.embed_dim, config["z_channels"], 1)

	def encode(self, x):
		## batched
		# n_samples = x.shape[0]
		# n_rounds = math.ceil(x.shape[0] / n_samples)
		# all_out = []
		# for n in range(n_rounds):
			# h = self.encoder(
				# x[n * n_samples : (n + 1) * n_samples]
			# )
			# moments = h # self.quant_conv(h)
			# posterior = DiagonalGaussianDistribution(moments)
			# all_out.append(posterior.sample())
		# z = torch.cat(all_out, dim=0)
		# return z

		## default
		h = self.encoder(x)
		moments = h # self.quant_conv(h)
		posterior = DiagonalGaussianDistribution(moments)
		return posterior.sample()


	def decode(self, z):
		## batched - seems the same as default?
		# n_samples = z.shape[0]
		# n_rounds = math.ceil(z.shape[0] / n_samples)
		# all_out = []
		# for n in range(n_rounds):
			# dec = self.decoder(
				# z[n * n_samples : (n + 1) * n_samples],
				# timesteps=len(z[n * n_samples : (n + 1) * n_samples]),
			# )
			# all_out.append(dec)
		# out = torch.cat(all_out, dim=0)

		## default
		out = self.decoder(
			z, timesteps=len(z)
		)
		return out

	def forward(self, input, sample_posterior=True):
		posterior = self.encode(input)
		if sample_posterior:
			z = posterior.sample()
		else:
			z = posterior.mode()
		dec = self.decode(z)
		return dec, posterior

class VideoDecoder(nn.Module):
	available_time_modes = ["all", "conv-only", "attn-only"]
	def __init__(
		self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
		attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
		resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
		attn_type="vanilla",
		video_kernel_size: Union[int, list] = 3, alpha: float = 0.0, merge_strategy: str = "learned", time_mode: str = "conv-only",
		**ignorekwargs
	):
		super().__init__()
		if use_linear_attn: attn_type = "linear"
		self.ch = ch
		self.temb_ch = 0
		self.num_resolutions = len(ch_mult)
		self.num_res_blocks = num_res_blocks
		self.resolution = resolution
		self.in_channels = in_channels
		self.give_pre_end = give_pre_end
		self.tanh_out = tanh_out

		self.video_kernel_size = video_kernel_size
		self.alpha = alpha
		self.merge_strategy = merge_strategy
		self.time_mode = time_mode
		assert (
			self.time_mode in self.available_time_modes
		), f"time_mode parameter has to be in {self.available_time_modes}"

		# compute in_ch_mult, block_in and curr_res at lowest res
		in_ch_mult = (1,)+tuple(ch_mult)
		block_in = ch*ch_mult[self.num_resolutions-1]
		curr_res = resolution // 2**(self.num_resolutions-1)
		self.z_shape = (1,z_channels,curr_res,curr_res)
		print("Working with z of shape {} = {} dimensions.".format(
			self.z_shape, np.prod(self.z_shape)))

		# z to block_in
		self.conv_in = torch.nn.Conv2d(
			z_channels,
			block_in,
			kernel_size=3,
			stride=1,
			padding=1
		)

		# middle
		self.mid = nn.Module()
		self.mid.block_1 = VideoResBlock(
			in_channels=block_in,
			out_channels=block_in,
			temb_channels=self.temb_ch,
			dropout=dropout,
			video_kernel_size=self.video_kernel_size,
			alpha=self.alpha,
			merge_strategy=self.merge_strategy,
		)
		self.mid.attn_1 = make_attn(
			block_in,
			attn_type=attn_type,
		)
		self.mid.block_2 = VideoResBlock(
			in_channels=block_in,
			out_channels=block_in,
			temb_channels=self.temb_ch,
			dropout=dropout,
			video_kernel_size=self.video_kernel_size,
			alpha=self.alpha,
			merge_strategy=self.merge_strategy,
		)

		# upsampling
		self.up = nn.ModuleList()
		for i_level in reversed(range(self.num_resolutions)):
			block = nn.ModuleList()
			attn = nn.ModuleList()
			block_out = ch*ch_mult[i_level]
			for i_block in range(self.num_res_blocks+1):
				block.append(VideoResBlock(
					in_channels=block_in,
					out_channels=block_out,
					temb_channels=self.temb_ch,
					dropout=dropout,
					video_kernel_size=self.video_kernel_size,
					alpha=self.alpha,
					merge_strategy=self.merge_strategy,
				))
				block_in = block_out
				if curr_res in attn_resolutions:
					attn.append(make_attn(
						block_in,
						attn_type=attn_type,
					))
			up = nn.Module()
			up.block = block
			up.attn = attn
			if i_level != 0:
				up.upsample = Upsample(block_in, resamp_with_conv)
				curr_res = curr_res * 2
			self.up.insert(0, up) # prepend to get consistent order

		# end
		self.norm_out = Normalize(block_in)
		self.conv_out = AE3DConv(
			in_channels = block_in,
			out_channels = out_ch,
			video_kernel_size=self.video_kernel_size,
			kernel_size=3,
			stride=1,
			padding=1,
		)

	def get_last_layer(self, skip_time_mix=False, **kwargs):
		if self.time_mode == "attn-only":
			raise NotImplementedError("TODO")
		else:
			return (
				self.conv_out.time_mix_conv.weight
				if not skip_time_mix
				else self.conv_out.weight
			)

	def forward(self, z, **kwargs):
		#assert z.shape[1:] == self.z_shape[1:]
		self.last_z_shape = z.shape

		# timestep embedding
		temb = None

		# z to block_in
		h = self.conv_in(z)

		# middle
		h = self.mid.block_1(h, temb, **kwargs)
		h = self.mid.attn_1(h)
		h = self.mid.block_2(h, temb, **kwargs)

		# upsampling
		for i_level in reversed(range(self.num_resolutions)):
			for i_block in range(self.num_res_blocks+1):
				h = self.up[i_level].block[i_block](h, temb, **kwargs)
				if len(self.up[i_level].attn) > 0:
					h = self.up[i_level].attn[i_block](h)
			if i_level != 0:
				h = self.up[i_level].upsample(h)

		# end
		if self.give_pre_end:
			return h

		h = self.norm_out(h)
		h = nonlinearity(h)
		h = self.conv_out(h, **kwargs)
		if self.tanh_out:
			h = torch.tanh(h)
		return h


class ResBlock(nn.Module):
	"""
	A residual block that can optionally change the number of channels.
	:param channels: the number of input channels.
	:param emb_channels: the number of timestep embedding channels.
	:param dropout: the rate of dropout.
	:param out_channels: if specified, the number of out channels.
	:param use_conv: if True and out_channels is specified, use a spatial
		convolution instead of a smaller 1x1 convolution to change the
		channels in the skip connection.
	:param dims: determines if the signal is 1D, 2D, or 3D.
	:param use_checkpoint: if True, use gradient checkpointing on this module.
	:param up: if True, use this block for upsampling.
	:param down: if True, use this block for downsampling.
	"""

	def __init__(
		self,
		channels: int,
		emb_channels: int,
		dropout: float,
		out_channels: Optional[int] = None,
		use_conv: bool = False,
		use_scale_shift_norm: bool = False,
		dims: int = 2,
		use_checkpoint: bool = False,
		up: bool = False,
		down: bool = False,
		kernel_size: int = 3,
		exchange_temb_dims: bool = False,
		skip_t_emb: bool = False,
	):
		super().__init__()
		self.channels = channels
		self.emb_channels = emb_channels
		self.dropout = dropout
		self.out_channels = out_channels or channels
		self.use_conv = use_conv
		self.use_checkpoint = use_checkpoint
		self.use_scale_shift_norm = use_scale_shift_norm
		self.exchange_temb_dims = exchange_temb_dims

		if isinstance(kernel_size, Iterable):
			padding = [k // 2 for k in kernel_size]
		else:
			padding = kernel_size // 2

		self.in_layers = nn.Sequential(
			normalization(channels),
			nn.SiLU(),
			conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
		)

		self.updown = up or down

		if up:
			self.h_upd = Upsample(channels, False, dims)
			self.x_upd = Upsample(channels, False, dims)
		elif down:
			self.h_upd = Downsample(channels, False, dims)
			self.x_upd = Downsample(channels, False, dims)
		else:
			self.h_upd = self.x_upd = nn.Identity()

		self.skip_t_emb = skip_t_emb
		self.emb_out_channels = (
			2 * self.out_channels if use_scale_shift_norm else self.out_channels
		)
		if self.skip_t_emb:
			print(f"Skipping timestep embedding in {self.__class__.__name__}")
			assert not self.use_scale_shift_norm
			self.emb_layers = None
			self.exchange_temb_dims = False
		else:
			self.emb_layers = nn.Sequential(
				nn.SiLU(),
				linear(
					emb_channels,
					self.emb_out_channels,
				),
			)

		self.out_layers = nn.Sequential(
			normalization(self.out_channels),
			nn.SiLU(),
			nn.Dropout(p=dropout),
			zero_module(
				conv_nd(
					dims,
					self.out_channels,
					self.out_channels,
					kernel_size,
					padding=padding,
				)
			),
		)

		if self.out_channels == channels:
			self.skip_connection = nn.Identity()
		elif use_conv:
			self.skip_connection = conv_nd(
				dims, channels, self.out_channels, kernel_size, padding=padding
			)
		else:
			self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

	def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
		"""
		Apply the block to a Tensor, conditioned on a timestep embedding.
		:param x: an [N x C x ...] Tensor of features.
		:param emb: an [N x emb_channels] Tensor of timestep embeddings.
		:return: an [N x C x ...] Tensor of outputs.
		"""
		if self.use_checkpoint:
			return checkpoint(self._forward, x, emb)
		else:
			return self._forward(x, emb)

	def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
		if self.updown:
			in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
			h = in_rest(x)
			h = self.h_upd(h)
			x = self.x_upd(x)
			h = in_conv(h)
		else:
			h = self.in_layers(x)

		if self.skip_t_emb:
			emb_out = torch.zeros_like(h)
		else:
			emb_out = self.emb_layers(emb).type(h.dtype)
		while len(emb_out.shape) < len(h.shape):
			emb_out = emb_out[..., None]
		if self.use_scale_shift_norm:
			out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
			scale, shift = torch.chunk(emb_out, 2, dim=1)
			h = out_norm(h) * (1 + scale) + shift
			h = out_rest(h)
		else:
			if self.exchange_temb_dims:
				emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
			h = h + emb_out
			h = self.out_layers(h)
		return self.skip_connection(x) + h

class VideoResBlock(ResnetBlock):
	def __init__(
		self,
		out_channels,
		*args,
		dropout=0.0,
		video_kernel_size=3,
		alpha=0.0,
		merge_strategy="learned",
		**kwargs,
	):
		super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
		if video_kernel_size is None:
			video_kernel_size = [3, 1, 1]
		self.time_stack = ResBlock(
			channels=out_channels,
			emb_channels=0,
			dropout=dropout,
			dims=3,
			use_scale_shift_norm=False,
			use_conv=False,
			up=False,
			down=False,
			kernel_size=video_kernel_size,
			use_checkpoint=False,
			skip_t_emb=True,
		)

		self.merge_strategy = merge_strategy
		if self.merge_strategy == "fixed":
			self.register_buffer("mix_factor", torch.Tensor([alpha]))
		elif self.merge_strategy == "learned":
			self.register_parameter(
				"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
			)
		else:
			raise ValueError(f"unknown merge strategy {self.merge_strategy}")

	def get_alpha(self, bs):
		if self.merge_strategy == "fixed":
			return self.mix_factor
		elif self.merge_strategy == "learned":
			return torch.sigmoid(self.mix_factor)
		else:
			raise NotImplementedError()

	def forward(self, x, temb, skip_video=False, timesteps=None):
		if timesteps is None:
			timesteps = self.timesteps

		b, c, h, w = x.shape

		x = super().forward(x, temb)

		if not skip_video:
			x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

			x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

			x = self.time_stack(x, temb)

			alpha = self.get_alpha(bs=b // timesteps)
			x = alpha * x + (1.0 - alpha) * x_mix

			x = rearrange(x, "b c t h w -> (b t) c h w")
		return x

class AE3DConv(torch.nn.Conv2d):
	def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
		super().__init__(in_channels, out_channels, *args, **kwargs)
		if isinstance(video_kernel_size, Iterable):
			padding = [int(k // 2) for k in video_kernel_size]
		else:
			padding = int(video_kernel_size // 2)

		self.time_mix_conv = torch.nn.Conv3d(
			in_channels=out_channels,
			out_channels=out_channels,
			kernel_size=video_kernel_size,
			padding=padding,
		)

	def forward(self, input, timesteps, skip_video=False):
		x = super().forward(input)
		if skip_video:
			return x
		x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
		x = self.time_mix_conv(x)
		return rearrange(x, "b c t h w -> (b t) c h w")

def normalization(channels):
	"""
	Make a standard normalization layer.
	:param channels: number of input channels.
	:return: an nn.Module for normalization.
	"""
	return GroupNorm32(32, channels)

class SiLU(nn.Module):
	def forward(self, x):
		return x * torch.sigmoid(x)

class GroupNorm32(nn.GroupNorm):
	def forward(self, x):
		return super().forward(x.float()).type(x.dtype)

def conv_nd(dims, *args, **kwargs):
	"""
	Create a 1D, 2D, or 3D convolution module.
	"""
	if dims == 1:
		return nn.Conv1d(*args, **kwargs)
	elif dims == 2:
		return nn.Conv2d(*args, **kwargs)
	elif dims == 3:
		return nn.Conv3d(*args, **kwargs)
	raise ValueError(f"unsupported dimensions: {dims}")

def zero_module(module):
	"""
	Zero out the parameters of a module and return it.
	"""
	for p in module.parameters():
		p.detach().zero_()
	return module