Spaces:
Configuration error
Configuration error
File size: 6,655 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import random
from typing import Iterable, Optional, Tuple
import numpy as np
from ...core.transforms_interface import DualTransform
from . import functional as F
__all__ = ["GridDropout"]
class GridDropout(DualTransform):
"""GridDropout, drops out rectangular regions of an image and the corresponding mask in a grid fashion.
Args:
ratio (float): the ratio of the mask holes to the unit_size (same for horizontal and vertical directions).
Must be between 0 and 1. Default: 0.5.
unit_size_min (int): minimum size of the grid unit. Must be between 2 and the image shorter edge.
If 'None', holes_number_x and holes_number_y are used to setup the grid. Default: `None`.
unit_size_max (int): maximum size of the grid unit. Must be between 2 and the image shorter edge.
If 'None', holes_number_x and holes_number_y are used to setup the grid. Default: `None`.
holes_number_x (int): the number of grid units in x direction. Must be between 1 and image width//2.
If 'None', grid unit width is set as image_width//10. Default: `None`.
holes_number_y (int): the number of grid units in y direction. Must be between 1 and image height//2.
If `None`, grid unit height is set equal to the grid unit width or image height, whatever is smaller.
shift_x (int): offsets of the grid start in x direction from (0,0) coordinate.
Clipped between 0 and grid unit_width - hole_width. Default: 0.
shift_y (int): offsets of the grid start in y direction from (0,0) coordinate.
Clipped between 0 and grid unit height - hole_height. Default: 0.
random_offset (boolean): weather to offset the grid randomly between 0 and grid unit size - hole size
If 'True', entered shift_x, shift_y are ignored and set randomly. Default: `False`.
fill_value (int): value for the dropped pixels. Default = 0
mask_fill_value (int): value for the dropped pixels in mask.
If `None`, transformation is not applied to the mask. Default: `None`.
Targets:
image, mask
Image types:
uint8, float32
References:
https://arxiv.org/abs/2001.04086
"""
def __init__(
self,
ratio: float = 0.5,
unit_size_min: Optional[int] = None,
unit_size_max: Optional[int] = None,
holes_number_x: Optional[int] = None,
holes_number_y: Optional[int] = None,
shift_x: int = 0,
shift_y: int = 0,
random_offset: bool = False,
fill_value: int = 0,
mask_fill_value: Optional[int] = None,
always_apply: bool = False,
p: float = 0.5,
):
super(GridDropout, self).__init__(always_apply, p)
self.ratio = ratio
self.unit_size_min = unit_size_min
self.unit_size_max = unit_size_max
self.holes_number_x = holes_number_x
self.holes_number_y = holes_number_y
self.shift_x = shift_x
self.shift_y = shift_y
self.random_offset = random_offset
self.fill_value = fill_value
self.mask_fill_value = mask_fill_value
if not 0 < self.ratio <= 1:
raise ValueError("ratio must be between 0 and 1.")
def apply(self, img: np.ndarray, holes: Iterable[Tuple[int, int, int, int]] = (), **params) -> np.ndarray:
return F.cutout(img, holes, self.fill_value)
def apply_to_mask(self, img: np.ndarray, holes: Iterable[Tuple[int, int, int, int]] = (), **params) -> np.ndarray:
if self.mask_fill_value is None:
return img
return F.cutout(img, holes, self.mask_fill_value)
def get_params_dependent_on_targets(self, params):
img = params["image"]
height, width = img.shape[:2]
# set grid using unit size limits
if self.unit_size_min and self.unit_size_max:
if not 2 <= self.unit_size_min <= self.unit_size_max:
raise ValueError("Max unit size should be >= min size, both at least 2 pixels.")
if self.unit_size_max > min(height, width):
raise ValueError("Grid size limits must be within the shortest image edge.")
unit_width = random.randint(self.unit_size_min, self.unit_size_max + 1)
unit_height = unit_width
else:
# set grid using holes numbers
if self.holes_number_x is None:
unit_width = max(2, width // 10)
else:
if not 1 <= self.holes_number_x <= width // 2:
raise ValueError("The hole_number_x must be between 1 and image width//2.")
unit_width = width // self.holes_number_x
if self.holes_number_y is None:
unit_height = max(min(unit_width, height), 2)
else:
if not 1 <= self.holes_number_y <= height // 2:
raise ValueError("The hole_number_y must be between 1 and image height//2.")
unit_height = height // self.holes_number_y
hole_width = int(unit_width * self.ratio)
hole_height = int(unit_height * self.ratio)
# min 1 pixel and max unit length - 1
hole_width = min(max(hole_width, 1), unit_width - 1)
hole_height = min(max(hole_height, 1), unit_height - 1)
# set offset of the grid
if self.shift_x is None:
shift_x = 0
else:
shift_x = min(max(0, self.shift_x), unit_width - hole_width)
if self.shift_y is None:
shift_y = 0
else:
shift_y = min(max(0, self.shift_y), unit_height - hole_height)
if self.random_offset:
shift_x = random.randint(0, unit_width - hole_width)
shift_y = random.randint(0, unit_height - hole_height)
holes = []
for i in range(width // unit_width + 1):
for j in range(height // unit_height + 1):
x1 = min(shift_x + unit_width * i, width)
y1 = min(shift_y + unit_height * j, height)
x2 = min(x1 + hole_width, width)
y2 = min(y1 + hole_height, height)
holes.append((x1, y1, x2, y2))
return {"holes": holes}
@property
def targets_as_params(self):
return ["image"]
def get_transform_init_args_names(self):
return (
"ratio",
"unit_size_min",
"unit_size_max",
"holes_number_x",
"holes_number_y",
"shift_x",
"shift_y",
"random_offset",
"fill_value",
"mask_fill_value",
)
|