Spaces:
Configuration error
Configuration error
File size: 40,699 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
import math
from typing import List, Optional, Sequence, Tuple, Union
import cv2
import numpy as np
import skimage.transform
from scipy.ndimage import gaussian_filter
from custom_albumentations.augmentations.utils import (
_maybe_process_in_chunks,
angle_2pi_range,
clipped,
preserve_channel_dim,
preserve_shape,
)
from ... import random_utils
from ...core.bbox_utils import denormalize_bbox, normalize_bbox
from ...core.transforms_interface import (
BoxInternalType,
FillValueType,
ImageColorType,
KeypointInternalType,
)
__all__ = [
"optical_distortion",
"elastic_transform_approx",
"grid_distortion",
"pad",
"pad_with_params",
"bbox_rot90",
"keypoint_rot90",
"rotate",
"bbox_rotate",
"keypoint_rotate",
"shift_scale_rotate",
"keypoint_shift_scale_rotate",
"bbox_shift_scale_rotate",
"elastic_transform",
"resize",
"scale",
"keypoint_scale",
"py3round",
"_func_max_size",
"longest_max_size",
"smallest_max_size",
"perspective",
"perspective_bbox",
"rotation2DMatrixToEulerAngles",
"perspective_keypoint",
"_is_identity_matrix",
"warp_affine",
"keypoint_affine",
"bbox_affine",
"safe_rotate",
"bbox_safe_rotate",
"keypoint_safe_rotate",
"piecewise_affine",
"to_distance_maps",
"from_distance_maps",
"keypoint_piecewise_affine",
"bbox_piecewise_affine",
"bbox_flip",
"bbox_hflip",
"bbox_transpose",
"bbox_vflip",
"hflip",
"hflip_cv2",
"transpose",
"keypoint_flip",
"keypoint_hflip",
"keypoint_transpose",
"keypoint_vflip",
]
def bbox_rot90(bbox: BoxInternalType, factor: int, rows: int, cols: int) -> BoxInternalType: # skipcq: PYL-W0613
"""Rotates a bounding box by 90 degrees CCW (see np.rot90)
Args:
bbox: A bounding box tuple (x_min, y_min, x_max, y_max).
factor: Number of CCW rotations. Must be in set {0, 1, 2, 3} See np.rot90.
rows: Image rows.
cols: Image cols.
Returns:
tuple: A bounding box tuple (x_min, y_min, x_max, y_max).
"""
if factor not in {0, 1, 2, 3}:
raise ValueError("Parameter n must be in set {0, 1, 2, 3}")
x_min, y_min, x_max, y_max = bbox[:4]
if factor == 1:
bbox = y_min, 1 - x_max, y_max, 1 - x_min
elif factor == 2:
bbox = 1 - x_max, 1 - y_max, 1 - x_min, 1 - y_min
elif factor == 3:
bbox = 1 - y_max, x_min, 1 - y_min, x_max
return bbox
@angle_2pi_range
def keypoint_rot90(keypoint: KeypointInternalType, factor: int, rows: int, cols: int, **params) -> KeypointInternalType:
"""Rotates a keypoint by 90 degrees CCW (see np.rot90)
Args:
keypoint: A keypoint `(x, y, angle, scale)`.
factor: Number of CCW rotations. Must be in range [0;3] See np.rot90.
rows: Image height.
cols: Image width.
Returns:
tuple: A keypoint `(x, y, angle, scale)`.
Raises:
ValueError: if factor not in set {0, 1, 2, 3}
"""
x, y, angle, scale = keypoint[:4]
if factor not in {0, 1, 2, 3}:
raise ValueError("Parameter n must be in set {0, 1, 2, 3}")
if factor == 1:
x, y, angle = y, (cols - 1) - x, angle - math.pi / 2
elif factor == 2:
x, y, angle = (cols - 1) - x, (rows - 1) - y, angle - math.pi
elif factor == 3:
x, y, angle = (rows - 1) - y, x, angle + math.pi / 2
return x, y, angle, scale
@preserve_channel_dim
def rotate(
img: np.ndarray,
angle: float,
interpolation: int = cv2.INTER_LINEAR,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
):
height, width = img.shape[:2]
# for images we use additional shifts of (0.5, 0.5) as otherwise
# we get an ugly black border for 90deg rotations
matrix = cv2.getRotationMatrix2D((width / 2 - 0.5, height / 2 - 0.5), angle, 1.0)
warp_fn = _maybe_process_in_chunks(
cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value
)
return warp_fn(img)
def bbox_rotate(bbox: BoxInternalType, angle: float, method: str, rows: int, cols: int) -> BoxInternalType:
"""Rotates a bounding box by angle degrees.
Args:
bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
angle: Angle of rotation in degrees.
method: Rotation method used. Should be one of: "largest_box", "ellipse". Default: "largest_box".
rows: Image rows.
cols: Image cols.
Returns:
A bounding box `(x_min, y_min, x_max, y_max)`.
References:
https://arxiv.org/abs/2109.13488
"""
x_min, y_min, x_max, y_max = bbox[:4]
scale = cols / float(rows)
if method == "largest_box":
x = np.array([x_min, x_max, x_max, x_min]) - 0.5
y = np.array([y_min, y_min, y_max, y_max]) - 0.5
elif method == "ellipse":
w = (x_max - x_min) / 2
h = (y_max - y_min) / 2
data = np.arange(0, 360, dtype=np.float32)
x = w * np.sin(np.radians(data)) + (w + x_min - 0.5)
y = h * np.cos(np.radians(data)) + (h + y_min - 0.5)
else:
raise ValueError(f"Method {method} is not a valid rotation method.")
angle = np.deg2rad(angle)
x_t = (np.cos(angle) * x * scale + np.sin(angle) * y) / scale
y_t = -np.sin(angle) * x * scale + np.cos(angle) * y
x_t = x_t + 0.5
y_t = y_t + 0.5
x_min, x_max = min(x_t), max(x_t)
y_min, y_max = min(y_t), max(y_t)
return x_min, y_min, x_max, y_max
@angle_2pi_range
def keypoint_rotate(keypoint, angle, rows, cols, **params):
"""Rotate a keypoint by angle.
Args:
keypoint (tuple): A keypoint `(x, y, angle, scale)`.
angle (float): Rotation angle.
rows (int): Image height.
cols (int): Image width.
Returns:
tuple: A keypoint `(x, y, angle, scale)`.
"""
center = (cols - 1) * 0.5, (rows - 1) * 0.5
matrix = cv2.getRotationMatrix2D(center, angle, 1.0)
x, y, a, s = keypoint[:4]
x, y = cv2.transform(np.array([[[x, y]]]), matrix).squeeze()
return x, y, a + math.radians(angle), s
@preserve_channel_dim
def shift_scale_rotate(
img, angle, scale, dx, dy, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None
):
height, width = img.shape[:2]
# for images we use additional shifts of (0.5, 0.5) as otherwise
# we get an ugly black border for 90deg rotations
center = (width / 2 - 0.5, height / 2 - 0.5)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
warp_affine_fn = _maybe_process_in_chunks(
cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value
)
return warp_affine_fn(img)
@angle_2pi_range
def keypoint_shift_scale_rotate(keypoint, angle, scale, dx, dy, rows, cols, **params):
(
x,
y,
a,
s,
) = keypoint[:4]
height, width = rows, cols
center = (cols - 1) * 0.5, (rows - 1) * 0.5
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
x, y = cv2.transform(np.array([[[x, y]]]), matrix).squeeze()
angle = a + math.radians(angle)
scale = s * scale
return x, y, angle, scale
def bbox_shift_scale_rotate(bbox, angle, scale, dx, dy, rotate_method, rows, cols, **kwargs): # skipcq: PYL-W0613
"""Rotates, shifts and scales a bounding box. Rotation is made by angle degrees,
scaling is made by scale factor and shifting is made by dx and dy.
Args:
bbox (tuple): A bounding box `(x_min, y_min, x_max, y_max)`.
angle (int): Angle of rotation in degrees.
scale (int): Scale factor.
dx (int): Shift along x-axis in pixel units.
dy (int): Shift along y-axis in pixel units.
rotate_method(str): Rotation method used. Should be one of: "largest_box", "ellipse".
Default: "largest_box".
rows (int): Image rows.
cols (int): Image cols.
Returns:
A bounding box `(x_min, y_min, x_max, y_max)`.
"""
height, width = rows, cols
center = (width / 2, height / 2)
if rotate_method == "ellipse":
x_min, y_min, x_max, y_max = bbox_rotate(bbox, angle, rotate_method, rows, cols)
matrix = cv2.getRotationMatrix2D(center, 0, scale)
else:
x_min, y_min, x_max, y_max = bbox[:4]
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
x = np.array([x_min, x_max, x_max, x_min])
y = np.array([y_min, y_min, y_max, y_max])
ones = np.ones(shape=(len(x)))
points_ones = np.vstack([x, y, ones]).transpose()
points_ones[:, 0] *= width
points_ones[:, 1] *= height
tr_points = matrix.dot(points_ones.T).T
tr_points[:, 0] /= width
tr_points[:, 1] /= height
x_min, x_max = min(tr_points[:, 0]), max(tr_points[:, 0])
y_min, y_max = min(tr_points[:, 1]), max(tr_points[:, 1])
return x_min, y_min, x_max, y_max
@preserve_shape
def elastic_transform(
img: np.ndarray,
alpha: float,
sigma: float,
alpha_affine: float,
interpolation: int = cv2.INTER_LINEAR,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
random_state: Optional[np.random.RandomState] = None,
approximate: bool = False,
same_dxdy: bool = False,
):
"""Elastic deformation of images as described in [Simard2003]_ (with modifications).
Based on https://gist.github.com/ernestum/601cdf56d2b424757de5
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
height, width = img.shape[:2]
# Random affine
center_square = np.array((height, width), dtype=np.float32) // 2
square_size = min((height, width)) // 3
alpha = float(alpha)
sigma = float(sigma)
alpha_affine = float(alpha_affine)
pts1 = np.array(
[
center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size,
],
dtype=np.float32,
)
pts2 = pts1 + random_utils.uniform(-alpha_affine, alpha_affine, size=pts1.shape, random_state=random_state).astype(
np.float32
)
matrix = cv2.getAffineTransform(pts1, pts2)
warp_fn = _maybe_process_in_chunks(
cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value
)
img = warp_fn(img)
if approximate:
# Approximate computation smooth displacement map with a large enough kernel.
# On large images (512+) this is approximately 2X times faster
dx = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1
cv2.GaussianBlur(dx, (17, 17), sigma, dst=dx)
dx *= alpha
if same_dxdy:
# Speed up even more
dy = dx
else:
dy = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1
cv2.GaussianBlur(dy, (17, 17), sigma, dst=dy)
dy *= alpha
else:
dx = np.float32(
gaussian_filter((random_utils.rand(height, width, random_state=random_state) * 2 - 1), sigma) * alpha
)
if same_dxdy:
# Speed up
dy = dx
else:
dy = np.float32(
gaussian_filter((random_utils.rand(height, width, random_state=random_state) * 2 - 1), sigma) * alpha
)
x, y = np.meshgrid(np.arange(width), np.arange(height))
map_x = np.float32(x + dx)
map_y = np.float32(y + dy)
remap_fn = _maybe_process_in_chunks(
cv2.remap, map1=map_x, map2=map_y, interpolation=interpolation, borderMode=border_mode, borderValue=value
)
return remap_fn(img)
@preserve_channel_dim
def resize(img, height, width, interpolation=cv2.INTER_LINEAR):
img_height, img_width = img.shape[:2]
if height == img_height and width == img_width:
return img
resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(width, height), interpolation=interpolation)
return resize_fn(img)
@preserve_channel_dim
def scale(img: np.ndarray, scale: float, interpolation: int = cv2.INTER_LINEAR) -> np.ndarray:
height, width = img.shape[:2]
new_height, new_width = int(height * scale), int(width * scale)
return resize(img, new_height, new_width, interpolation)
def keypoint_scale(keypoint: KeypointInternalType, scale_x: float, scale_y: float) -> KeypointInternalType:
"""Scales a keypoint by scale_x and scale_y.
Args:
keypoint: A keypoint `(x, y, angle, scale)`.
scale_x: Scale coefficient x-axis.
scale_y: Scale coefficient y-axis.
Returns:
A keypoint `(x, y, angle, scale)`.
"""
x, y, angle, scale = keypoint[:4]
return x * scale_x, y * scale_y, angle, scale * max(scale_x, scale_y)
def py3round(number):
"""Unified rounding in all python versions."""
if abs(round(number) - number) == 0.5:
return int(2.0 * round(number / 2.0))
return int(round(number))
def _func_max_size(img, max_size, interpolation, func):
height, width = img.shape[:2]
scale = max_size / float(func(width, height))
if scale != 1.0:
new_height, new_width = tuple(py3round(dim * scale) for dim in (height, width))
img = resize(img, height=new_height, width=new_width, interpolation=interpolation)
return img
@preserve_channel_dim
def longest_max_size(img: np.ndarray, max_size: int, interpolation: int) -> np.ndarray:
return _func_max_size(img, max_size, interpolation, max)
@preserve_channel_dim
def smallest_max_size(img: np.ndarray, max_size: int, interpolation: int) -> np.ndarray:
return _func_max_size(img, max_size, interpolation, min)
@preserve_channel_dim
def perspective(
img: np.ndarray,
matrix: np.ndarray,
max_width: int,
max_height: int,
border_val: Union[int, float, List[int], List[float], np.ndarray],
border_mode: int,
keep_size: bool,
interpolation: int,
):
h, w = img.shape[:2]
perspective_func = _maybe_process_in_chunks(
cv2.warpPerspective,
M=matrix,
dsize=(max_width, max_height),
borderMode=border_mode,
borderValue=border_val,
flags=interpolation,
)
warped = perspective_func(img)
if keep_size:
return resize(warped, h, w, interpolation=interpolation)
return warped
def perspective_bbox(
bbox: BoxInternalType,
height: int,
width: int,
matrix: np.ndarray,
max_width: int,
max_height: int,
keep_size: bool,
) -> BoxInternalType:
x1, y1, x2, y2 = denormalize_bbox(bbox, height, width)[:4]
points = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]], dtype=np.float32)
x1, y1, x2, y2 = float("inf"), float("inf"), 0, 0
for pt in points:
pt = perspective_keypoint(pt.tolist() + [0, 0], height, width, matrix, max_width, max_height, keep_size)
x, y = pt[:2]
x1 = min(x1, x)
x2 = max(x2, x)
y1 = min(y1, y)
y2 = max(y2, y)
return normalize_bbox((x1, y1, x2, y2), height if keep_size else max_height, width if keep_size else max_width)
def rotation2DMatrixToEulerAngles(matrix: np.ndarray, y_up: bool = False) -> float:
"""
Args:
matrix (np.ndarray): Rotation matrix
y_up (bool): is Y axis looks up or down
"""
if y_up:
return np.arctan2(matrix[1, 0], matrix[0, 0])
return np.arctan2(-matrix[1, 0], matrix[0, 0])
@angle_2pi_range
def perspective_keypoint(
keypoint: KeypointInternalType,
height: int,
width: int,
matrix: np.ndarray,
max_width: int,
max_height: int,
keep_size: bool,
) -> KeypointInternalType:
x, y, angle, scale = keypoint
keypoint_vector = np.array([x, y], dtype=np.float32).reshape([1, 1, 2])
x, y = cv2.perspectiveTransform(keypoint_vector, matrix)[0, 0]
angle += rotation2DMatrixToEulerAngles(matrix[:2, :2], y_up=True)
scale_x = np.sign(matrix[0, 0]) * np.sqrt(matrix[0, 0] ** 2 + matrix[0, 1] ** 2)
scale_y = np.sign(matrix[1, 1]) * np.sqrt(matrix[1, 0] ** 2 + matrix[1, 1] ** 2)
scale *= max(scale_x, scale_y)
if keep_size:
scale_x = width / max_width
scale_y = height / max_height
return keypoint_scale((x, y, angle, scale), scale_x, scale_y)
return x, y, angle, scale
def _is_identity_matrix(matrix: skimage.transform.ProjectiveTransform) -> bool:
return np.allclose(matrix.params, np.eye(3, dtype=np.float32))
@preserve_channel_dim
def warp_affine(
image: np.ndarray,
matrix: skimage.transform.ProjectiveTransform,
interpolation: int,
cval: Union[int, float, Sequence[int], Sequence[float]],
mode: int,
output_shape: Sequence[int],
) -> np.ndarray:
if _is_identity_matrix(matrix):
return image
dsize = int(np.round(output_shape[1])), int(np.round(output_shape[0]))
warp_fn = _maybe_process_in_chunks(
cv2.warpAffine, M=matrix.params[:2], dsize=dsize, flags=interpolation, borderMode=mode, borderValue=cval
)
tmp = warp_fn(image)
return tmp
@angle_2pi_range
def keypoint_affine(
keypoint: KeypointInternalType,
matrix: skimage.transform.ProjectiveTransform,
scale: dict,
) -> KeypointInternalType:
if _is_identity_matrix(matrix):
return keypoint
x, y, a, s = keypoint[:4]
x, y = cv2.transform(np.array([[[x, y]]]), matrix.params[:2]).squeeze()
a += rotation2DMatrixToEulerAngles(matrix.params[:2])
s *= np.max([scale["x"], scale["y"]])
return x, y, a, s
def bbox_affine(
bbox: BoxInternalType,
matrix: skimage.transform.ProjectiveTransform,
rotate_method: str,
rows: int,
cols: int,
output_shape: Sequence[int],
) -> BoxInternalType:
if _is_identity_matrix(matrix):
return bbox
x_min, y_min, x_max, y_max = denormalize_bbox(bbox, rows, cols)[:4]
if rotate_method == "largest_box":
points = np.array(
[
[x_min, y_min],
[x_max, y_min],
[x_max, y_max],
[x_min, y_max],
]
)
elif rotate_method == "ellipse":
w = (x_max - x_min) / 2
h = (y_max - y_min) / 2
data = np.arange(0, 360, dtype=np.float32)
x = w * np.sin(np.radians(data)) + (w + x_min - 0.5)
y = h * np.cos(np.radians(data)) + (h + y_min - 0.5)
points = np.hstack([x.reshape(-1, 1), y.reshape(-1, 1)])
else:
raise ValueError(f"Method {rotate_method} is not a valid rotation method.")
points = skimage.transform.matrix_transform(points, matrix.params)
x_min = np.min(points[:, 0])
x_max = np.max(points[:, 0])
y_min = np.min(points[:, 1])
y_max = np.max(points[:, 1])
return normalize_bbox((x_min, y_min, x_max, y_max), output_shape[0], output_shape[1])
@preserve_channel_dim
def safe_rotate(
img: np.ndarray,
matrix: np.ndarray,
interpolation: int,
value: FillValueType = None,
border_mode: int = cv2.BORDER_REFLECT_101,
) -> np.ndarray:
h, w = img.shape[:2]
warp_fn = _maybe_process_in_chunks(
cv2.warpAffine,
M=matrix,
dsize=(w, h),
flags=interpolation,
borderMode=border_mode,
borderValue=value,
)
return warp_fn(img)
def bbox_safe_rotate(bbox: BoxInternalType, matrix: np.ndarray, cols: int, rows: int) -> BoxInternalType:
x1, y1, x2, y2 = denormalize_bbox(bbox, rows, cols)[:4]
points = np.array(
[
[x1, y1, 1],
[x2, y1, 1],
[x2, y2, 1],
[x1, y2, 1],
]
)
points = points @ matrix.T
x1 = points[:, 0].min()
x2 = points[:, 0].max()
y1 = points[:, 1].min()
y2 = points[:, 1].max()
def fix_point(pt1: float, pt2: float, max_val: float) -> Tuple[float, float]:
# In my opinion, these errors should be very low, around 1-2 pixels.
if pt1 < 0:
return 0, pt2 + pt1
if pt2 > max_val:
return pt1 - (pt2 - max_val), max_val
return pt1, pt2
x1, x2 = fix_point(x1, x2, cols)
y1, y2 = fix_point(y1, y2, rows)
return normalize_bbox((x1, y1, x2, y2), rows, cols)
def keypoint_safe_rotate(
keypoint: KeypointInternalType,
matrix: np.ndarray,
angle: float,
scale_x: float,
scale_y: float,
cols: int,
rows: int,
) -> KeypointInternalType:
x, y, a, s = keypoint[:4]
point = np.array([[x, y, 1]])
x, y = (point @ matrix.T)[0]
# To avoid problems with float errors
x = np.clip(x, 0, cols - 1)
y = np.clip(y, 0, rows - 1)
a += angle
s *= max(scale_x, scale_y)
return x, y, a, s
@clipped
def piecewise_affine(
img: np.ndarray,
matrix: Optional[skimage.transform.PiecewiseAffineTransform],
interpolation: int,
mode: str,
cval: float,
) -> np.ndarray:
if matrix is None:
return img
return skimage.transform.warp(
img, matrix, order=interpolation, mode=mode, cval=cval, preserve_range=True, output_shape=img.shape
)
def to_distance_maps(
keypoints: Sequence[Tuple[float, float]], height: int, width: int, inverted: bool = False
) -> np.ndarray:
"""Generate a ``(H,W,N)`` array of distance maps for ``N`` keypoints.
The ``n``-th distance map contains at every location ``(y, x)`` the
euclidean distance to the ``n``-th keypoint.
This function can be used as a helper when augmenting keypoints with a
method that only supports the augmentation of images.
Args:
keypoint: keypoint coordinates
height: image height
width: image width
inverted (bool): If ``True``, inverted distance maps are returned where each
distance value d is replaced by ``d/(d+1)``, i.e. the distance
maps have values in the range ``(0.0, 1.0]`` with ``1.0`` denoting
exactly the position of the respective keypoint.
Returns:
(H, W, N) ndarray
A ``float32`` array containing ``N`` distance maps for ``N``
keypoints. Each location ``(y, x, n)`` in the array denotes the
euclidean distance at ``(y, x)`` to the ``n``-th keypoint.
If `inverted` is ``True``, the distance ``d`` is replaced
by ``d/(d+1)``. The height and width of the array match the
height and width in ``KeypointsOnImage.shape``.
"""
distance_maps = np.zeros((height, width, len(keypoints)), dtype=np.float32)
yy = np.arange(0, height)
xx = np.arange(0, width)
grid_xx, grid_yy = np.meshgrid(xx, yy)
for i, (x, y) in enumerate(keypoints):
distance_maps[:, :, i] = (grid_xx - x) ** 2 + (grid_yy - y) ** 2
distance_maps = np.sqrt(distance_maps)
if inverted:
return 1 / (distance_maps + 1)
return distance_maps
def from_distance_maps(
distance_maps: np.ndarray,
inverted: bool,
if_not_found_coords: Optional[Union[Sequence[int], dict]],
threshold: Optional[float] = None,
) -> List[Tuple[float, float]]:
"""Convert outputs of ``to_distance_maps()`` to ``KeypointsOnImage``.
This is the inverse of `to_distance_maps`.
Args:
distance_maps (np.ndarray): The distance maps. ``N`` is the number of keypoints.
inverted (bool): Whether the given distance maps were generated in inverted mode
(i.e. :func:`KeypointsOnImage.to_distance_maps` was called with ``inverted=True``) or in non-inverted mode.
if_not_found_coords (tuple, list, dict or None, optional):
Coordinates to use for keypoints that cannot be found in `distance_maps`.
* If this is a ``list``/``tuple``, it must contain two ``int`` values.
* If it is a ``dict``, it must contain the keys ``x`` and ``y`` with each containing one ``int`` value.
* If this is ``None``, then the keypoint will not be added.
threshold (float): The search for keypoints works by searching for the
argmin (non-inverted) or argmax (inverted) in each channel. This
parameters contains the maximum (non-inverted) or minimum (inverted) value to accept in order to view a hit
as a keypoint. Use ``None`` to use no min/max.
nb_channels (None, int): Number of channels of the image on which the keypoints are placed.
Some keypoint augmenters require that information. If set to ``None``, the keypoint's shape will be set
to ``(height, width)``, otherwise ``(height, width, nb_channels)``.
"""
if distance_maps.ndim != 3:
raise ValueError(
f"Expected three-dimensional input, "
f"got {distance_maps.ndim} dimensions and shape {distance_maps.shape}."
)
height, width, nb_keypoints = distance_maps.shape
drop_if_not_found = False
if if_not_found_coords is None:
drop_if_not_found = True
if_not_found_x = -1
if_not_found_y = -1
elif isinstance(if_not_found_coords, (tuple, list)):
if len(if_not_found_coords) != 2:
raise ValueError(
f"Expected tuple/list 'if_not_found_coords' to contain exactly two entries, "
f"got {len(if_not_found_coords)}."
)
if_not_found_x = if_not_found_coords[0]
if_not_found_y = if_not_found_coords[1]
elif isinstance(if_not_found_coords, dict):
if_not_found_x = if_not_found_coords["x"]
if_not_found_y = if_not_found_coords["y"]
else:
raise ValueError(
f"Expected if_not_found_coords to be None or tuple or list or dict, got {type(if_not_found_coords)}."
)
keypoints = []
for i in range(nb_keypoints):
if inverted:
hitidx_flat = np.argmax(distance_maps[..., i])
else:
hitidx_flat = np.argmin(distance_maps[..., i])
hitidx_ndim = np.unravel_index(hitidx_flat, (height, width))
if not inverted and threshold is not None:
found = distance_maps[hitidx_ndim[0], hitidx_ndim[1], i] < threshold
elif inverted and threshold is not None:
found = distance_maps[hitidx_ndim[0], hitidx_ndim[1], i] >= threshold
else:
found = True
if found:
keypoints.append((float(hitidx_ndim[1]), float(hitidx_ndim[0])))
else:
if not drop_if_not_found:
keypoints.append((if_not_found_x, if_not_found_y))
return keypoints
def keypoint_piecewise_affine(
keypoint: KeypointInternalType,
matrix: Optional[skimage.transform.PiecewiseAffineTransform],
h: int,
w: int,
keypoints_threshold: float,
) -> KeypointInternalType:
if matrix is None:
return keypoint
x, y, a, s = keypoint[:4]
dist_maps = to_distance_maps([(x, y)], h, w, True)
dist_maps = piecewise_affine(dist_maps, matrix, 0, "constant", 0)
x, y = from_distance_maps(dist_maps, True, {"x": -1, "y": -1}, keypoints_threshold)[0]
return x, y, a, s
def bbox_piecewise_affine(
bbox: BoxInternalType,
matrix: Optional[skimage.transform.PiecewiseAffineTransform],
h: int,
w: int,
keypoints_threshold: float,
) -> BoxInternalType:
if matrix is None:
return bbox
x1, y1, x2, y2 = denormalize_bbox(bbox, h, w)[:4]
keypoints = [
(x1, y1),
(x2, y1),
(x2, y2),
(x1, y2),
]
dist_maps = to_distance_maps(keypoints, h, w, True)
dist_maps = piecewise_affine(dist_maps, matrix, 0, "constant", 0)
keypoints = from_distance_maps(dist_maps, True, {"x": -1, "y": -1}, keypoints_threshold)
keypoints = [i for i in keypoints if 0 <= i[0] < w and 0 <= i[1] < h]
keypoints_arr = np.array(keypoints)
x1 = keypoints_arr[:, 0].min()
y1 = keypoints_arr[:, 1].min()
x2 = keypoints_arr[:, 0].max()
y2 = keypoints_arr[:, 1].max()
return normalize_bbox((x1, y1, x2, y2), h, w)
def vflip(img: np.ndarray) -> np.ndarray:
return np.ascontiguousarray(img[::-1, ...])
def hflip(img: np.ndarray) -> np.ndarray:
return np.ascontiguousarray(img[:, ::-1, ...])
def hflip_cv2(img: np.ndarray) -> np.ndarray:
return cv2.flip(img, 1)
@preserve_shape
def random_flip(img: np.ndarray, code: int) -> np.ndarray:
return cv2.flip(img, code)
def transpose(img: np.ndarray) -> np.ndarray:
return img.transpose(1, 0, 2) if len(img.shape) > 2 else img.transpose(1, 0)
def rot90(img: np.ndarray, factor: int) -> np.ndarray:
img = np.rot90(img, factor)
return np.ascontiguousarray(img)
def bbox_vflip(bbox: BoxInternalType, rows: int, cols: int) -> BoxInternalType: # skipcq: PYL-W0613
"""Flip a bounding box vertically around the x-axis.
Args:
bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
rows: Image rows.
cols: Image cols.
Returns:
tuple: A bounding box `(x_min, y_min, x_max, y_max)`.
"""
x_min, y_min, x_max, y_max = bbox[:4]
return x_min, 1 - y_max, x_max, 1 - y_min
def bbox_hflip(bbox: BoxInternalType, rows: int, cols: int) -> BoxInternalType: # skipcq: PYL-W0613
"""Flip a bounding box horizontally around the y-axis.
Args:
bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
rows: Image rows.
cols: Image cols.
Returns:
A bounding box `(x_min, y_min, x_max, y_max)`.
"""
x_min, y_min, x_max, y_max = bbox[:4]
return 1 - x_max, y_min, 1 - x_min, y_max
def bbox_flip(bbox: BoxInternalType, d: int, rows: int, cols: int) -> BoxInternalType:
"""Flip a bounding box either vertically, horizontally or both depending on the value of `d`.
Args:
bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
d: dimension. 0 for vertical flip, 1 for horizontal, -1 for transpose
rows: Image rows.
cols: Image cols.
Returns:
A bounding box `(x_min, y_min, x_max, y_max)`.
Raises:
ValueError: if value of `d` is not -1, 0 or 1.
"""
if d == 0:
bbox = bbox_vflip(bbox, rows, cols)
elif d == 1:
bbox = bbox_hflip(bbox, rows, cols)
elif d == -1:
bbox = bbox_hflip(bbox, rows, cols)
bbox = bbox_vflip(bbox, rows, cols)
else:
raise ValueError("Invalid d value {}. Valid values are -1, 0 and 1".format(d))
return bbox
def bbox_transpose(
bbox: KeypointInternalType, axis: int, rows: int, cols: int
) -> KeypointInternalType: # skipcq: PYL-W0613
"""Transposes a bounding box along given axis.
Args:
bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
axis: 0 - main axis, 1 - secondary axis.
rows: Image rows.
cols: Image cols.
Returns:
A bounding box tuple `(x_min, y_min, x_max, y_max)`.
Raises:
ValueError: If axis not equal to 0 or 1.
"""
x_min, y_min, x_max, y_max = bbox[:4]
if axis not in {0, 1}:
raise ValueError("Axis must be either 0 or 1.")
if axis == 0:
bbox = (y_min, x_min, y_max, x_max)
if axis == 1:
bbox = (1 - y_max, 1 - x_max, 1 - y_min, 1 - x_min)
return bbox
@angle_2pi_range
def keypoint_vflip(keypoint: KeypointInternalType, rows: int, cols: int) -> KeypointInternalType:
"""Flip a keypoint vertically around the x-axis.
Args:
keypoint: A keypoint `(x, y, angle, scale)`.
rows: Image height.
cols: Image width.
Returns:
tuple: A keypoint `(x, y, angle, scale)`.
"""
x, y, angle, scale = keypoint[:4]
angle = -angle
return x, (rows - 1) - y, angle, scale
@angle_2pi_range
def keypoint_hflip(keypoint: KeypointInternalType, rows: int, cols: int) -> KeypointInternalType:
"""Flip a keypoint horizontally around the y-axis.
Args:
keypoint: A keypoint `(x, y, angle, scale)`.
rows: Image height.
cols: Image width.
Returns:
A keypoint `(x, y, angle, scale)`.
"""
x, y, angle, scale = keypoint[:4]
angle = math.pi - angle
return (cols - 1) - x, y, angle, scale
def keypoint_flip(keypoint: KeypointInternalType, d: int, rows: int, cols: int) -> KeypointInternalType:
"""Flip a keypoint either vertically, horizontally or both depending on the value of `d`.
Args:
keypoint: A keypoint `(x, y, angle, scale)`.
d: Number of flip. Must be -1, 0 or 1:
* 0 - vertical flip,
* 1 - horizontal flip,
* -1 - vertical and horizontal flip.
rows: Image height.
cols: Image width.
Returns:
A keypoint `(x, y, angle, scale)`.
Raises:
ValueError: if value of `d` is not -1, 0 or 1.
"""
if d == 0:
keypoint = keypoint_vflip(keypoint, rows, cols)
elif d == 1:
keypoint = keypoint_hflip(keypoint, rows, cols)
elif d == -1:
keypoint = keypoint_hflip(keypoint, rows, cols)
keypoint = keypoint_vflip(keypoint, rows, cols)
else:
raise ValueError(f"Invalid d value {d}. Valid values are -1, 0 and 1")
return keypoint
def keypoint_transpose(keypoint: KeypointInternalType) -> KeypointInternalType:
"""Rotate a keypoint by angle.
Args:
keypoint: A keypoint `(x, y, angle, scale)`.
Returns:
A keypoint `(x, y, angle, scale)`.
"""
x, y, angle, scale = keypoint[:4]
if angle <= np.pi:
angle = np.pi - angle
else:
angle = 3 * np.pi - angle
return y, x, angle, scale
@preserve_channel_dim
def pad(
img: np.ndarray,
min_height: int,
min_width: int,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
) -> np.ndarray:
height, width = img.shape[:2]
if height < min_height:
h_pad_top = int((min_height - height) / 2.0)
h_pad_bottom = min_height - height - h_pad_top
else:
h_pad_top = 0
h_pad_bottom = 0
if width < min_width:
w_pad_left = int((min_width - width) / 2.0)
w_pad_right = min_width - width - w_pad_left
else:
w_pad_left = 0
w_pad_right = 0
img = pad_with_params(img, h_pad_top, h_pad_bottom, w_pad_left, w_pad_right, border_mode, value)
if img.shape[:2] != (max(min_height, height), max(min_width, width)):
raise RuntimeError(
"Invalid result shape. Got: {}. Expected: {}".format(
img.shape[:2], (max(min_height, height), max(min_width, width))
)
)
return img
@preserve_channel_dim
def pad_with_params(
img: np.ndarray,
h_pad_top: int,
h_pad_bottom: int,
w_pad_left: int,
w_pad_right: int,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
) -> np.ndarray:
pad_fn = _maybe_process_in_chunks(
cv2.copyMakeBorder,
top=h_pad_top,
bottom=h_pad_bottom,
left=w_pad_left,
right=w_pad_right,
borderType=border_mode,
value=value,
)
return pad_fn(img)
@preserve_shape
def optical_distortion(
img: np.ndarray,
k: int = 0,
dx: int = 0,
dy: int = 0,
interpolation: int = cv2.INTER_LINEAR,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
) -> np.ndarray:
"""Barrel / pincushion distortion. Unconventional augment.
Reference:
| https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
| https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
| https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
| http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/
"""
height, width = img.shape[:2]
fx = width
fy = height
cx = width * 0.5 + dx
cy = height * 0.5 + dy
camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
distortion = np.array([k, k, 0, 0, 0], dtype=np.float32)
map1, map2 = cv2.initUndistortRectifyMap(
camera_matrix, distortion, None, None, (width, height), cv2.CV_32FC1 # type: ignore[attr-defined]
)
return cv2.remap(img, map1, map2, interpolation=interpolation, borderMode=border_mode, borderValue=value)
@preserve_shape
def grid_distortion(
img: np.ndarray,
num_steps: int = 10,
xsteps: Tuple = (),
ysteps: Tuple = (),
interpolation: int = cv2.INTER_LINEAR,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
) -> np.ndarray:
"""Perform a grid distortion of an input image.
Reference:
http://pythology.blogspot.sg/2014/03/interpolation-on-regular-distorted-grid.html
"""
height, width = img.shape[:2]
x_step = width // num_steps
xx = np.zeros(width, np.float32)
prev = 0
for idx in range(num_steps + 1):
x = idx * x_step
start = int(x)
end = int(x) + x_step
if end > width:
end = width
cur = width
else:
cur = prev + x_step * xsteps[idx]
xx[start:end] = np.linspace(prev, cur, end - start)
prev = cur
y_step = height // num_steps
yy = np.zeros(height, np.float32)
prev = 0
for idx in range(num_steps + 1):
y = idx * y_step
start = int(y)
end = int(y) + y_step
if end > height:
end = height
cur = height
else:
cur = prev + y_step * ysteps[idx]
yy[start:end] = np.linspace(prev, cur, end - start)
prev = cur
map_x, map_y = np.meshgrid(xx, yy)
map_x = map_x.astype(np.float32)
map_y = map_y.astype(np.float32)
remap_fn = _maybe_process_in_chunks(
cv2.remap,
map1=map_x,
map2=map_y,
interpolation=interpolation,
borderMode=border_mode,
borderValue=value,
)
return remap_fn(img)
@preserve_shape
def elastic_transform_approx(
img: np.ndarray,
alpha: float,
sigma: float,
alpha_affine: float,
interpolation: int = cv2.INTER_LINEAR,
border_mode: int = cv2.BORDER_REFLECT_101,
value: Optional[ImageColorType] = None,
random_state: Optional[np.random.RandomState] = None,
) -> np.ndarray:
"""Elastic deformation of images as described in [Simard2003]_ (with modifications for speed).
Based on https://gist.github.com/ernestum/601cdf56d2b424757de5
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
height, width = img.shape[:2]
# Random affine
center_square = np.array((height, width), dtype=np.float32) // 2
square_size = min((height, width)) // 3
alpha = float(alpha)
sigma = float(sigma)
alpha_affine = float(alpha_affine)
pts1 = np.array(
[
center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size,
],
dtype=np.float32,
)
pts2 = pts1 + random_utils.uniform(-alpha_affine, alpha_affine, size=pts1.shape, random_state=random_state).astype(
np.float32
)
matrix = cv2.getAffineTransform(pts1, pts2)
warp_fn = _maybe_process_in_chunks(
cv2.warpAffine,
M=matrix,
dsize=(width, height),
flags=interpolation,
borderMode=border_mode,
borderValue=value,
)
img = warp_fn(img)
dx = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1
cv2.GaussianBlur(dx, (17, 17), sigma, dst=dx)
dx *= alpha
dy = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1
cv2.GaussianBlur(dy, (17, 17), sigma, dst=dy)
dy *= alpha
x, y = np.meshgrid(np.arange(width), np.arange(height))
map_x = np.float32(x + dx)
map_y = np.float32(y + dy)
remap_fn = _maybe_process_in_chunks(
cv2.remap,
map1=map_x,
map2=map_y,
interpolation=interpolation,
borderMode=border_mode,
borderValue=value,
)
return remap_fn(img)
|