File size: 7,376 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import random
from typing import Dict, Sequence, Tuple, Union

import cv2
import numpy as np

from ...core.transforms_interface import (
    BoxInternalType,
    DualTransform,
    KeypointInternalType,
    to_tuple,
)
from . import functional as F

__all__ = ["RandomScale", "LongestMaxSize", "SmallestMaxSize", "Resize"]


class RandomScale(DualTransform):
    """Randomly resize the input. Output image size is different from the input image size.

    Args:
        scale_limit ((float, float) or float): scaling factor range. If scale_limit is a single float value, the
            range will be (-scale_limit, scale_limit). Note that the scale_limit will be biased by 1.
            If scale_limit is a tuple, like (low, high), sampling will be done from the range (1 + low, 1 + high).
            Default: (-0.1, 0.1).
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def __init__(self, scale_limit=0.1, interpolation=cv2.INTER_LINEAR, always_apply=False, p=0.5):
        super(RandomScale, self).__init__(always_apply, p)
        self.scale_limit = to_tuple(scale_limit, bias=1.0)
        self.interpolation = interpolation

    def get_params(self):
        return {"scale": random.uniform(self.scale_limit[0], self.scale_limit[1])}

    def apply(self, img, scale=0, interpolation=cv2.INTER_LINEAR, **params):
        return F.scale(img, scale, interpolation)

    def apply_to_bbox(self, bbox, **params):
        # Bounding box coordinates are scale invariant
        return bbox

    def apply_to_keypoint(self, keypoint, scale=0, **params):
        return F.keypoint_scale(keypoint, scale, scale)

    def get_transform_init_args(self):
        return {"interpolation": self.interpolation, "scale_limit": to_tuple(self.scale_limit, bias=-1.0)}


class LongestMaxSize(DualTransform):
    """Rescale an image so that maximum side is equal to max_size, keeping the aspect ratio of the initial image.

    Args:
        max_size (int, list of int): maximum size of the image after the transformation. When using a list, max size
            will be randomly selected from the values in the list.
        interpolation (OpenCV flag): interpolation method. Default: cv2.INTER_LINEAR.
        p (float): probability of applying the transform. Default: 1.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        max_size: Union[int, Sequence[int]] = 1024,
        interpolation: int = cv2.INTER_LINEAR,
        always_apply: bool = False,
        p: float = 1,
    ):
        super(LongestMaxSize, self).__init__(always_apply, p)
        self.interpolation = interpolation
        self.max_size = max_size

    def apply(
        self, img: np.ndarray, max_size: int = 1024, interpolation: int = cv2.INTER_LINEAR, **params
    ) -> np.ndarray:
        return F.longest_max_size(img, max_size=max_size, interpolation=interpolation)

    def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
        # Bounding box coordinates are scale invariant
        return bbox

    def apply_to_keypoint(self, keypoint: KeypointInternalType, max_size: int = 1024, **params) -> KeypointInternalType:
        height = params["rows"]
        width = params["cols"]

        scale = max_size / max([height, width])
        return F.keypoint_scale(keypoint, scale, scale)

    def get_params(self) -> Dict[str, int]:
        return {"max_size": self.max_size if isinstance(self.max_size, int) else random.choice(self.max_size)}

    def get_transform_init_args_names(self) -> Tuple[str, ...]:
        return ("max_size", "interpolation")


class SmallestMaxSize(DualTransform):
    """Rescale an image so that minimum side is equal to max_size, keeping the aspect ratio of the initial image.

    Args:
        max_size (int, list of int): maximum size of smallest side of the image after the transformation. When using a
            list, max size will be randomly selected from the values in the list.
        interpolation (OpenCV flag): interpolation method. Default: cv2.INTER_LINEAR.
        p (float): probability of applying the transform. Default: 1.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        max_size: Union[int, Sequence[int]] = 1024,
        interpolation: int = cv2.INTER_LINEAR,
        always_apply: bool = False,
        p: float = 1,
    ):
        super(SmallestMaxSize, self).__init__(always_apply, p)
        self.interpolation = interpolation
        self.max_size = max_size

    def apply(
        self, img: np.ndarray, max_size: int = 1024, interpolation: int = cv2.INTER_LINEAR, **params
    ) -> np.ndarray:
        return F.smallest_max_size(img, max_size=max_size, interpolation=interpolation)

    def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
        return bbox

    def apply_to_keypoint(self, keypoint: KeypointInternalType, max_size: int = 1024, **params) -> KeypointInternalType:
        height = params["rows"]
        width = params["cols"]

        scale = max_size / min([height, width])
        return F.keypoint_scale(keypoint, scale, scale)

    def get_params(self) -> Dict[str, int]:
        return {"max_size": self.max_size if isinstance(self.max_size, int) else random.choice(self.max_size)}

    def get_transform_init_args_names(self) -> Tuple[str, ...]:
        return ("max_size", "interpolation")


class Resize(DualTransform):
    """Resize the input to the given height and width.

    Args:
        height (int): desired height of the output.
        width (int): desired width of the output.
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        p (float): probability of applying the transform. Default: 1.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def __init__(self, height, width, interpolation=cv2.INTER_LINEAR, always_apply=False, p=1):
        super(Resize, self).__init__(always_apply, p)
        self.height = height
        self.width = width
        self.interpolation = interpolation

    def apply(self, img, interpolation=cv2.INTER_LINEAR, **params):
        return F.resize(img, height=self.height, width=self.width, interpolation=interpolation)

    def apply_to_bbox(self, bbox, **params):
        # Bounding box coordinates are scale invariant
        return bbox

    def apply_to_keypoint(self, keypoint, **params):
        height = params["rows"]
        width = params["cols"]
        scale_x = self.width / width
        scale_y = self.height / height
        return F.keypoint_scale(keypoint, scale_x, scale_y)

    def get_transform_init_args_names(self):
        return ("height", "width", "interpolation")