File size: 3,160 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torchvision # Fix issue Unknown builtin op: torchvision::nms
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from PIL import Image

from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download, DENSEPOSE_MODEL_NAME
from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences

N_PART_LABELS = 24

class DenseposeDetector:
    def __init__(self, model):
        self.dense_pose_estimation = model
        self.device = "cpu"
        self.result_visualizer = DensePoseMaskedColormapResultsVisualizer(
            alpha=1, 
            data_extractor=_extract_i_from_iuvarr, 
            segm_extractor=_extract_i_from_iuvarr, 
            val_scale = 255.0 / N_PART_LABELS
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path=DENSEPOSE_MODEL_NAME, filename="densepose_r50_fpn_dl.torchscript"):
        torchscript_model_path = custom_hf_download(pretrained_model_or_path, filename)
        densepose = torch.jit.load(torchscript_model_path, map_location="cpu")
        return cls(densepose)

    def to(self, device):
        self.dense_pose_estimation.to(device)
        self.device = device
        return self
    
    def __call__(self, input_image, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", cmap="viridis", **kwargs):
        input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
        input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
        H, W  = input_image.shape[:2]

        hint_image_canvas = np.zeros([H, W], dtype=np.uint8)
        hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3])

        input_image = rearrange(torch.from_numpy(input_image).to(self.device), 'h w c -> c h w')

        pred_boxes, corase_segm, fine_segm, u, v = self.dense_pose_estimation(input_image)

        extractor = densepose_chart_predictor_output_to_result_with_confidences
        densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))]

        if cmap=="viridis":
            self.result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS
            hint_image = self.result_visualizer.visualize(hint_image_canvas, densepose_results)
            hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB)
            hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68
            hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1
            hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84
        else:
            self.result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA
            hint_image = self.result_visualizer.visualize(hint_image_canvas, densepose_results)
            hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB)

        detected_map = remove_pad(HWC3(hint_image))
        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)
        return detected_map