File size: 8,579 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import yaml
import argparse
import math
import torch
from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.utils import *
from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.encoder_decoder import AutoencoderKL
# from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.transmodel import TransModel
from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.uncond_unet import Unet
from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.data import *
from fvcore.common.config import CfgNode
from pathlib import Path

def load_conf(config_file, conf={}):
    with open(config_file) as f:
        exp_conf = yaml.load(f, Loader=yaml.FullLoader)
        for k, v in exp_conf.items():
            conf[k] = v
    return conf

def prepare_args(ckpt_path, sampling_timesteps=1):
    return argparse.Namespace(
        cfg=load_conf(Path(__file__).parent / "default.yaml"),
        pre_weight=ckpt_path,
        sampling_timesteps=sampling_timesteps
    )

class DiffusionEdge:
    def __init__(self, args) -> None:
        self.cfg = CfgNode(args.cfg)
        torch.manual_seed(42)
        np.random.seed(42)
        model_cfg = self.cfg.model
        first_stage_cfg = model_cfg.first_stage
        first_stage_model = AutoencoderKL(
            ddconfig=first_stage_cfg.ddconfig,
            lossconfig=first_stage_cfg.lossconfig,
            embed_dim=first_stage_cfg.embed_dim,
            ckpt_path=first_stage_cfg.ckpt_path,
        )
        if model_cfg.model_name == 'cond_unet':
            from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.mask_cond_unet import Unet
            unet_cfg = model_cfg.unet
            unet = Unet(dim=unet_cfg.dim,
                        channels=unet_cfg.channels,
                        dim_mults=unet_cfg.dim_mults,
                        learned_variance=unet_cfg.get('learned_variance', False),
                        out_mul=unet_cfg.out_mul,
                        cond_in_dim=unet_cfg.cond_in_dim,
                        cond_dim=unet_cfg.cond_dim,
                        cond_dim_mults=unet_cfg.cond_dim_mults,
                        window_sizes1=unet_cfg.window_sizes1,
                        window_sizes2=unet_cfg.window_sizes2,
                        fourier_scale=unet_cfg.fourier_scale,
                        cfg=unet_cfg,
                        )
        else:
            raise NotImplementedError
        if model_cfg.model_type == 'const_sde':
            from custom_controlnet_aux.diffusion_edge.denoising_diffusion_pytorch.ddm_const_sde import LatentDiffusion
        else:
            raise NotImplementedError(f'{model_cfg.model_type} is not surportted !')
        
        self.model = LatentDiffusion(
            model=unet,
            auto_encoder=first_stage_model,
            train_sample=model_cfg.train_sample,
            image_size=model_cfg.image_size,
            timesteps=model_cfg.timesteps,
            sampling_timesteps=args.sampling_timesteps,
            loss_type=model_cfg.loss_type,
            objective=model_cfg.objective,
            scale_factor=model_cfg.scale_factor,
            scale_by_std=model_cfg.scale_by_std,
            scale_by_softsign=model_cfg.scale_by_softsign,
            default_scale=model_cfg.get('default_scale', False),
            input_keys=model_cfg.input_keys,
            ckpt_path=model_cfg.ckpt_path,
            ignore_keys=model_cfg.ignore_keys,
            only_model=model_cfg.only_model,
            start_dist=model_cfg.start_dist,
            perceptual_weight=model_cfg.perceptual_weight,
            use_l1=model_cfg.get('use_l1', True),
            cfg=model_cfg,
        )
        self.cfg.sampler.ckpt_path = args.pre_weight

        data = torch.load(self.cfg.sampler.ckpt_path, map_location="cpu")
        if self.cfg.sampler.use_ema:
            sd = data['ema']
            new_sd = {}
            for k in sd.keys():
                if k.startswith("ema_model."):
                    new_k = k[10:]  # remove ema_model.
                    new_sd[new_k] = sd[k]
            sd = new_sd
            self.model.load_state_dict(sd)
        else:
            self.model.load_state_dict(data['model'])
        if 'scale_factor' in data['model']:
            self.model.scale_factor = data['model']['scale_factor']

        self.model.eval()
        self.device = "cpu"
    
    def to(self, device):
        self.model.to(device)
        self.device = device
        return self
        
    def __call__(self, image, batch_size=8):
        image = normalize_to_neg_one_to_one(image).to(self.device)
        mask = None
        if self.cfg.sampler.sample_type == 'whole':
            return self.whole_sample(image, raw_size=image.shape[2:], mask=mask)
        elif self.cfg.sampler.sample_type == 'slide':
            return self.slide_sample(image, crop_size=self.cfg.sampler.get('crop_size', [320, 320]),
                                            stride=self.cfg.sampler.stride, mask=mask, bs=batch_size)
    
    def whole_sample(self, inputs, raw_size, mask=None):
        inputs = F.interpolate(inputs, size=(416, 416), mode='bilinear', align_corners=True)
        seg_logits = self.model.sample(batch_size=inputs.shape[0], cond=inputs, mask=mask)
        seg_logits = F.interpolate(seg_logits, size=raw_size, mode='bilinear', align_corners=True)
        return seg_logits

    def slide_sample(self, inputs, crop_size, stride, mask=None, bs=8):
        """Inference by sliding-window with overlap.

        If h_crop > h_img or w_crop > w_img, the small patch will be used to
        decode without padding.

        Args:
            inputs (tensor): the tensor should have a shape NxCxHxW,
                which contains all images in the batch.
            batch_img_metas (List[dict]): List of image metainfo where each may
                also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
                'ori_shape', and 'pad_shape'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:PackSegInputs`.

        Returns:
            Tensor: The segmentation results, seg_logits from model of each
                input image.
        """

        h_stride, w_stride = stride
        h_crop, w_crop = crop_size
        batch_size, _, h_img, w_img = inputs.size()
        out_channels = 1
        h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
        w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
        preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
        # aux_out1 = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
        # aux_out2 = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
        count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
        crop_imgs = []
        x1s = []
        x2s = []
        y1s = []
        y2s = []
        for h_idx in range(h_grids):
            for w_idx in range(w_grids):
                y1 = h_idx * h_stride
                x1 = w_idx * w_stride
                y2 = min(y1 + h_crop, h_img)
                x2 = min(x1 + w_crop, w_img)
                y1 = max(y2 - h_crop, 0)
                x1 = max(x2 - w_crop, 0)
                crop_img = inputs[:, :, y1:y2, x1:x2]
                crop_imgs.append(crop_img)
                x1s.append(x1)
                x2s.append(x2)
                y1s.append(y1)
                y2s.append(y2)
        crop_imgs = torch.cat(crop_imgs, dim=0)
        crop_seg_logits_list = []
        num_windows = crop_imgs.shape[0]
        bs = bs
        length = math.ceil(num_windows / bs)
        for i in range(length):
            if i == length - 1:
                crop_imgs_temp = crop_imgs[bs * i:num_windows, ...]
            else:
                crop_imgs_temp = crop_imgs[bs * i:bs * (i + 1), ...]

            crop_seg_logits = self.model.sample(batch_size=crop_imgs_temp.shape[0], cond=crop_imgs_temp, mask=mask)
            crop_seg_logits_list.append(crop_seg_logits)
        crop_seg_logits = torch.cat(crop_seg_logits_list, dim=0)
        for crop_seg_logit, x1, x2, y1, y2 in zip(crop_seg_logits, x1s, x2s, y1s, y2s):
            preds += F.pad(crop_seg_logit,
                           (int(x1), int(preds.shape[3] - x2), int(y1),
                            int(preds.shape[2] - y2)))
            count_mat[:, :, y1:y2, x1:x2] += 1

        assert (count_mat == 0).sum() == 0
        seg_logits = preds / count_mat
        return seg_logits