Spaces:
Configuration error
Configuration error
File size: 3,329 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
import types
import warnings
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from einops import rearrange
from PIL import Image
from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, DIFFUSION_EDGE_MODEL_NAME
from .models.dsine_arch import DSINE
from custom_controlnet_aux.dsine.utils.utils import get_intrins_from_fov
# load model
def load_checkpoint(fpath, model):
ckpt = torch.load(fpath, map_location='cpu')['model']
load_dict = {}
for k, v in ckpt.items():
if k.startswith('module.'):
k_ = k.replace('module.', '')
load_dict[k_] = v
else:
load_dict[k] = v
model.load_state_dict(load_dict)
return model
def get_pad(orig_H, orig_W):
if orig_W % 64 == 0:
l = 0
r = 0
else:
new_W = 64 * ((orig_W // 64) + 1)
l = (new_W - orig_W) // 2
r = (new_W - orig_W) - l
if orig_H % 64 == 0:
t = 0
b = 0
else:
new_H = 64 * ((orig_H // 64) + 1)
t = (new_H - orig_H) // 2
b = (new_H - orig_H) - t
return l, r, t, b
class DsineDetector:
def __init__(self, model):
self.model = model
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.device = "cpu"
@classmethod
def from_pretrained(cls, pretrained_model_or_path=DIFFUSION_EDGE_MODEL_NAME, filename="dsine.pt"):
model_path = custom_hf_download(pretrained_model_or_path, filename)
model = DSINE()
model = load_checkpoint(model_path, model)
model.eval()
return cls(model)
def to(self, device):
self.model.to(device)
self.model.pixel_coords = self.model.pixel_coords.to(device)
self.device = device
return self
def __call__(self, input_image, fov=60.0, iterations=5, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs):
self.model.num_iter = iterations
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
orig_H, orig_W = input_image.shape[:2]
l, r, t, b = get_pad(orig_H, orig_W)
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method, mode="constant")
with torch.no_grad():
input_image = torch.from_numpy(input_image).float().to(self.device)
input_image = input_image / 255.0
input_image = rearrange(input_image, 'h w c -> 1 c h w')
input_image = self.norm(input_image)
intrins = get_intrins_from_fov(new_fov=fov, H=orig_H, W=orig_W, device=self.device).unsqueeze(0)
intrins[:, 0, 2] += l
intrins[:, 1, 2] += t
normal = self.model(input_image, intrins)
normal = normal[-1][0]
normal = ((normal + 1) * 0.5).clip(0, 1)
normal = rearrange(normal, 'c h w -> h w c').cpu().numpy()
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
detected_map = HWC3(normal_image)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map
|