Spaces:
Configuration error
Configuration error
File size: 12,493 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
# This preprocessor is licensed by CMU for non-commercial use only.
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import json
import torch
import numpy as np
from . import util
from .body import Body, BodyResult, Keypoint
from .hand import Hand
from .face import Face
from .types import PoseResult, HandResult, FaceResult, AnimalPoseResult
from huggingface_hub import hf_hub_download
from .wholebody import Wholebody
import warnings
from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download
import cv2
from PIL import Image
from .animalpose import AnimalPoseImage
from typing import Tuple, List, Callable, Union, Optional
def draw_animalposes(animals: list[list[Keypoint]], H: int, W: int) -> np.ndarray:
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
for animal_pose in animals:
canvas = draw_animalpose(canvas, animal_pose)
return canvas
def draw_animalpose(canvas: np.ndarray, keypoints: list[Keypoint]) -> np.ndarray:
# order of the keypoints for AP10k and a standardized list of colors for limbs
keypointPairsList = [
(1, 2),
(2, 3),
(1, 3),
(3, 4),
(4, 9),
(9, 10),
(10, 11),
(4, 6),
(6, 7),
(7, 8),
(4, 5),
(5, 15),
(15, 16),
(16, 17),
(5, 12),
(12, 13),
(13, 14),
]
colorsList = [
(255, 255, 255),
(100, 255, 100),
(150, 255, 255),
(100, 50, 255),
(50, 150, 200),
(0, 255, 255),
(0, 150, 0),
(0, 0, 255),
(0, 0, 150),
(255, 50, 255),
(255, 0, 255),
(255, 0, 0),
(150, 0, 0),
(255, 255, 100),
(0, 150, 0),
(255, 255, 0),
(150, 150, 150),
] # 16 colors needed
for ind, (i, j) in enumerate(keypointPairsList):
p1 = keypoints[i - 1]
p2 = keypoints[j - 1]
if p1 is not None and p2 is not None:
cv2.line(
canvas,
(int(p1.x), int(p1.y)),
(int(p2.x), int(p2.y)),
colorsList[ind],
5,
)
return canvas
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
"""
Draw the detected poses on an empty canvas.
Args:
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
H (int): The height of the canvas.
W (int): The width of the canvas.
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.
Returns:
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
"""
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
for pose in poses:
if draw_body:
canvas = util.draw_bodypose(canvas, pose.body.keypoints)
if draw_hand:
canvas = util.draw_handpose(canvas, pose.left_hand)
canvas = util.draw_handpose(canvas, pose.right_hand)
if draw_face:
canvas = util.draw_facepose(canvas, pose.face)
return canvas
def decode_json_as_poses(
pose_json: dict,
) -> Tuple[List[PoseResult], List[AnimalPoseResult], int, int]:
"""Decode the json_string complying with the openpose JSON output format
to poses that controlnet recognizes.
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
Args:
json_string: The json string to decode.
Returns:
human_poses
animal_poses
canvas_height
canvas_width
"""
height = pose_json["canvas_height"]
width = pose_json["canvas_width"]
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def decompress_keypoints(
numbers: Optional[List[float]],
) -> Optional[List[Optional[Keypoint]]]:
if not numbers:
return None
assert len(numbers) % 3 == 0
def create_keypoint(x, y, c):
if c < 1.0:
return None
keypoint = Keypoint(x, y)
return keypoint
return [create_keypoint(x, y, c) for x, y, c in chunks(numbers, n=3)]
return (
[
PoseResult(
body=BodyResult(
keypoints=decompress_keypoints(pose.get("pose_keypoints_2d"))
),
left_hand=decompress_keypoints(pose.get("hand_left_keypoints_2d")),
right_hand=decompress_keypoints(pose.get("hand_right_keypoints_2d")),
face=decompress_keypoints(pose.get("face_keypoints_2d")),
)
for pose in pose_json.get("people", [])
],
[decompress_keypoints(pose) for pose in pose_json.get("animals", [])],
height,
width,
)
def encode_poses_as_dict(poses: List[PoseResult], canvas_height: int, canvas_width: int) -> str:
""" Encode the pose as a dict following openpose JSON output format:
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
"""
def compress_keypoints(keypoints: Union[List[Keypoint], None]) -> Union[List[float], None]:
if not keypoints:
return None
return [
value
for keypoint in keypoints
for value in (
[float(keypoint.x), float(keypoint.y), 1.0]
if keypoint is not None
else [0.0, 0.0, 0.0]
)
]
return {
'people': [
{
'pose_keypoints_2d': compress_keypoints(pose.body.keypoints),
"face_keypoints_2d": compress_keypoints(pose.face),
"hand_left_keypoints_2d": compress_keypoints(pose.left_hand),
"hand_right_keypoints_2d":compress_keypoints(pose.right_hand),
}
for pose in poses
],
'canvas_height': canvas_height,
'canvas_width': canvas_width,
}
global_cached_dwpose = Wholebody()
class DwposeDetector:
"""
A class for detecting human poses in images using the Dwpose model.
Attributes:
model_dir (str): Path to the directory where the pose models are stored.
"""
def __init__(self, dw_pose_estimation):
self.dw_pose_estimation = dw_pose_estimation
@classmethod
def from_pretrained(cls, pretrained_model_or_path, pretrained_det_model_or_path=None, det_filename=None, pose_filename=None, torchscript_device="cuda"):
global global_cached_dwpose
pretrained_det_model_or_path = pretrained_det_model_or_path or pretrained_model_or_path
det_filename = det_filename or "yolox_l.onnx"
pose_filename = pose_filename or "dw-ll_ucoco_384.onnx"
det_model_path = custom_hf_download(pretrained_det_model_or_path, det_filename)
pose_model_path = custom_hf_download(pretrained_model_or_path, pose_filename)
print(f"\nDWPose: Using {det_filename} for bbox detection and {pose_filename} for pose estimation")
if global_cached_dwpose.det is None or global_cached_dwpose.det_filename != det_filename:
t = Wholebody(det_model_path, None, torchscript_device=torchscript_device)
t.pose = global_cached_dwpose.pose
t.pose_filename = global_cached_dwpose.pose
global_cached_dwpose = t
if global_cached_dwpose.pose is None or global_cached_dwpose.pose_filename != pose_filename:
t = Wholebody(None, pose_model_path, torchscript_device=torchscript_device)
t.det = global_cached_dwpose.det
t.det_filename = global_cached_dwpose.det_filename
global_cached_dwpose = t
return cls(global_cached_dwpose)
def detect_poses(self, oriImg) -> List[PoseResult]:
with torch.no_grad():
keypoints_info = self.dw_pose_estimation(oriImg.copy())
return Wholebody.format_result(keypoints_info)
def __call__(self, input_image, detect_resolution=512, include_body=True, include_hand=False, include_face=False, hand_and_face=None, output_type="pil", image_and_json=False, upscale_method="INTER_CUBIC", **kwargs):
if hand_and_face is not None:
warnings.warn("hand_and_face is deprecated. Use include_hand and include_face instead.", DeprecationWarning)
include_hand = hand_and_face
include_face = hand_and_face
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
poses = self.detect_poses(input_image)
canvas = draw_poses(poses, input_image.shape[0], input_image.shape[1], draw_body=include_body, draw_hand=include_hand, draw_face=include_face)
canvas, remove_pad = resize_image_with_pad(canvas, detect_resolution, upscale_method)
detected_map = HWC3(remove_pad(canvas))
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
if image_and_json:
return (detected_map, encode_poses_as_dict(poses, input_image.shape[0], input_image.shape[1]))
return detected_map
global_cached_animalpose = AnimalPoseImage()
class AnimalposeDetector:
"""
A class for detecting animal poses in images using the RTMPose AP10k model.
Attributes:
model_dir (str): Path to the directory where the pose models are stored.
"""
def __init__(self, animal_pose_estimation):
self.animal_pose_estimation = animal_pose_estimation
@classmethod
def from_pretrained(cls, pretrained_model_or_path, pretrained_det_model_or_path=None, det_filename="yolox_l.onnx", pose_filename="dw-ll_ucoco_384.onnx", torchscript_device="cuda"):
global global_cached_animalpose
det_model_path = custom_hf_download(pretrained_det_model_or_path, det_filename)
pose_model_path = custom_hf_download(pretrained_model_or_path, pose_filename)
print(f"\nAnimalPose: Using {det_filename} for bbox detection and {pose_filename} for pose estimation")
if global_cached_animalpose.det is None or global_cached_animalpose.det_filename != det_filename:
t = AnimalPoseImage(det_model_path, None, torchscript_device=torchscript_device)
t.pose = global_cached_animalpose.pose
t.pose_filename = global_cached_animalpose.pose
global_cached_animalpose = t
if global_cached_animalpose.pose is None or global_cached_animalpose.pose_filename != pose_filename:
t = AnimalPoseImage(None, pose_model_path, torchscript_device=torchscript_device)
t.det = global_cached_animalpose.det
t.det_filename = global_cached_animalpose.det_filename
global_cached_animalpose = t
return cls(global_cached_animalpose)
def __call__(self, input_image, detect_resolution=512, output_type="pil", image_and_json=False, upscale_method="INTER_CUBIC", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
result = self.animal_pose_estimation(input_image)
if result is None:
detected_map = np.zeros_like(input_image)
openpose_dict = {
'version': 'ap10k',
'animals': [],
'canvas_height': input_image.shape[0],
'canvas_width': input_image.shape[1]
}
else:
detected_map, openpose_dict = result
detected_map = remove_pad(detected_map)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
if image_and_json:
return (detected_map, openpose_dict)
return detected_map |