File size: 12,493 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
# This preprocessor is licensed by CMU for non-commercial use only.

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import json
import torch
import numpy as np
from . import util
from .body import Body, BodyResult, Keypoint
from .hand import Hand
from .face import Face
from .types import PoseResult, HandResult, FaceResult, AnimalPoseResult
from huggingface_hub import hf_hub_download
from .wholebody import Wholebody
import warnings
from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download
import cv2
from PIL import Image
from .animalpose import AnimalPoseImage

from typing import Tuple, List, Callable, Union, Optional


def draw_animalposes(animals: list[list[Keypoint]], H: int, W: int) -> np.ndarray:
    canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
    for animal_pose in animals:
        canvas = draw_animalpose(canvas, animal_pose)
    return canvas


def draw_animalpose(canvas: np.ndarray, keypoints: list[Keypoint]) -> np.ndarray:
    # order of the keypoints for AP10k and a standardized list of colors for limbs
    keypointPairsList = [
        (1, 2),
        (2, 3),
        (1, 3),
        (3, 4),
        (4, 9),
        (9, 10),
        (10, 11),
        (4, 6),
        (6, 7),
        (7, 8),
        (4, 5),
        (5, 15),
        (15, 16),
        (16, 17),
        (5, 12),
        (12, 13),
        (13, 14),
    ]
    colorsList = [
        (255, 255, 255),
        (100, 255, 100),
        (150, 255, 255),
        (100, 50, 255),
        (50, 150, 200),
        (0, 255, 255),
        (0, 150, 0),
        (0, 0, 255),
        (0, 0, 150),
        (255, 50, 255),
        (255, 0, 255),
        (255, 0, 0),
        (150, 0, 0),
        (255, 255, 100),
        (0, 150, 0),
        (255, 255, 0),
        (150, 150, 150),
    ]  # 16 colors needed

    for ind, (i, j) in enumerate(keypointPairsList):
        p1 = keypoints[i - 1]
        p2 = keypoints[j - 1]

        if p1 is not None and p2 is not None:
            cv2.line(
                canvas,
                (int(p1.x), int(p1.y)),
                (int(p2.x), int(p2.y)),
                colorsList[ind],
                5,
            )
    return canvas


def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
    """
    Draw the detected poses on an empty canvas.

    Args:
        poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
        H (int): The height of the canvas.
        W (int): The width of the canvas.
        draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
        draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
        draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.

    Returns:
        numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
    """
    canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)

    for pose in poses:
        if draw_body:
            canvas = util.draw_bodypose(canvas, pose.body.keypoints)

        if draw_hand:
            canvas = util.draw_handpose(canvas, pose.left_hand)
            canvas = util.draw_handpose(canvas, pose.right_hand)

        if draw_face:
            canvas = util.draw_facepose(canvas, pose.face)

    return canvas


def decode_json_as_poses(
    pose_json: dict,
) -> Tuple[List[PoseResult], List[AnimalPoseResult], int, int]:
    """Decode the json_string complying with the openpose JSON output format
    to poses that controlnet recognizes.
    https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md

    Args:
        json_string: The json string to decode.

    Returns:
        human_poses
        animal_poses
        canvas_height
        canvas_width
    """
    height = pose_json["canvas_height"]
    width = pose_json["canvas_width"]

    def chunks(lst, n):
        """Yield successive n-sized chunks from lst."""
        for i in range(0, len(lst), n):
            yield lst[i : i + n]

    def decompress_keypoints(
        numbers: Optional[List[float]],
    ) -> Optional[List[Optional[Keypoint]]]:
        if not numbers:
            return None

        assert len(numbers) % 3 == 0

        def create_keypoint(x, y, c):
            if c < 1.0:
                return None
            keypoint = Keypoint(x, y)
            return keypoint

        return [create_keypoint(x, y, c) for x, y, c in chunks(numbers, n=3)]

    return (
        [
            PoseResult(
                body=BodyResult(
                    keypoints=decompress_keypoints(pose.get("pose_keypoints_2d"))
                ),
                left_hand=decompress_keypoints(pose.get("hand_left_keypoints_2d")),
                right_hand=decompress_keypoints(pose.get("hand_right_keypoints_2d")),
                face=decompress_keypoints(pose.get("face_keypoints_2d")),
            )
            for pose in pose_json.get("people", [])
        ],
        [decompress_keypoints(pose) for pose in pose_json.get("animals", [])],
        height,
        width,
    )


def encode_poses_as_dict(poses: List[PoseResult], canvas_height: int, canvas_width: int) -> str:
    """ Encode the pose as a dict following openpose JSON output format:
    https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
    """
    def compress_keypoints(keypoints: Union[List[Keypoint], None]) -> Union[List[float], None]:
        if not keypoints:
            return None
        
        return [
            value
            for keypoint in keypoints
            for value in (
                [float(keypoint.x), float(keypoint.y), 1.0]
                if keypoint is not None
                else [0.0, 0.0, 0.0]
            )
        ]

    return {
        'people': [
            {
                'pose_keypoints_2d': compress_keypoints(pose.body.keypoints),
                "face_keypoints_2d": compress_keypoints(pose.face),
                "hand_left_keypoints_2d": compress_keypoints(pose.left_hand),
                "hand_right_keypoints_2d":compress_keypoints(pose.right_hand),
            }
            for pose in poses
        ],
        'canvas_height': canvas_height,
        'canvas_width': canvas_width,
    }

global_cached_dwpose = Wholebody()

class DwposeDetector:
    """
    A class for detecting human poses in images using the Dwpose model.

    Attributes:
        model_dir (str): Path to the directory where the pose models are stored.
    """
    def __init__(self, dw_pose_estimation):
        self.dw_pose_estimation = dw_pose_estimation
    
    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, pretrained_det_model_or_path=None, det_filename=None, pose_filename=None, torchscript_device="cuda"):
        global global_cached_dwpose
        pretrained_det_model_or_path = pretrained_det_model_or_path or pretrained_model_or_path
        det_filename = det_filename or "yolox_l.onnx"
        pose_filename = pose_filename or "dw-ll_ucoco_384.onnx"
        det_model_path = custom_hf_download(pretrained_det_model_or_path, det_filename)
        pose_model_path = custom_hf_download(pretrained_model_or_path, pose_filename)
        
        print(f"\nDWPose: Using {det_filename} for bbox detection and {pose_filename} for pose estimation")
        if global_cached_dwpose.det is None or global_cached_dwpose.det_filename != det_filename:
            t = Wholebody(det_model_path, None, torchscript_device=torchscript_device)
            t.pose = global_cached_dwpose.pose
            t.pose_filename = global_cached_dwpose.pose
            global_cached_dwpose = t
        
        if global_cached_dwpose.pose is None or global_cached_dwpose.pose_filename != pose_filename:
            t = Wholebody(None, pose_model_path, torchscript_device=torchscript_device)
            t.det = global_cached_dwpose.det
            t.det_filename = global_cached_dwpose.det_filename
            global_cached_dwpose = t
        return cls(global_cached_dwpose)

    def detect_poses(self, oriImg) -> List[PoseResult]:
        with torch.no_grad():
            keypoints_info = self.dw_pose_estimation(oriImg.copy())
            return Wholebody.format_result(keypoints_info)
    
    def __call__(self, input_image, detect_resolution=512, include_body=True, include_hand=False, include_face=False, hand_and_face=None, output_type="pil", image_and_json=False, upscale_method="INTER_CUBIC", **kwargs):
        if hand_and_face is not None:
            warnings.warn("hand_and_face is deprecated. Use include_hand and include_face instead.", DeprecationWarning)
            include_hand = hand_and_face
            include_face = hand_and_face

        input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
        poses = self.detect_poses(input_image)
        
        canvas = draw_poses(poses, input_image.shape[0], input_image.shape[1], draw_body=include_body, draw_hand=include_hand, draw_face=include_face)
        canvas, remove_pad = resize_image_with_pad(canvas, detect_resolution, upscale_method)
        detected_map = HWC3(remove_pad(canvas))

        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)
        
        if image_and_json:
            return (detected_map, encode_poses_as_dict(poses, input_image.shape[0], input_image.shape[1]))
        
        return detected_map

global_cached_animalpose = AnimalPoseImage()
class AnimalposeDetector:
    """
    A class for detecting animal poses in images using the RTMPose AP10k model.

    Attributes:
        model_dir (str): Path to the directory where the pose models are stored.
    """
    def __init__(self, animal_pose_estimation):
        self.animal_pose_estimation = animal_pose_estimation
    
    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, pretrained_det_model_or_path=None, det_filename="yolox_l.onnx", pose_filename="dw-ll_ucoco_384.onnx", torchscript_device="cuda"):
        global global_cached_animalpose
        det_model_path = custom_hf_download(pretrained_det_model_or_path, det_filename)
        pose_model_path = custom_hf_download(pretrained_model_or_path, pose_filename)
        
        print(f"\nAnimalPose: Using {det_filename} for bbox detection and {pose_filename} for pose estimation")
        if global_cached_animalpose.det is None or global_cached_animalpose.det_filename != det_filename:
            t = AnimalPoseImage(det_model_path, None, torchscript_device=torchscript_device)
            t.pose = global_cached_animalpose.pose
            t.pose_filename = global_cached_animalpose.pose
            global_cached_animalpose = t
        
        if global_cached_animalpose.pose is None or global_cached_animalpose.pose_filename != pose_filename:
            t = AnimalPoseImage(None, pose_model_path, torchscript_device=torchscript_device)
            t.det = global_cached_animalpose.det
            t.det_filename = global_cached_animalpose.det_filename
            global_cached_animalpose = t
        return cls(global_cached_animalpose)
    
    def __call__(self, input_image, detect_resolution=512, output_type="pil", image_and_json=False, upscale_method="INTER_CUBIC", **kwargs):
        input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
        input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
        result = self.animal_pose_estimation(input_image)
        if result is None:
            detected_map = np.zeros_like(input_image)
            openpose_dict = {
                'version': 'ap10k',
                'animals': [],
                'canvas_height': input_image.shape[0],
                'canvas_width': input_image.shape[1]
            }
        else:
            detected_map, openpose_dict = result
        detected_map = remove_pad(detected_map)
        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)
        
        if image_and_json:
            return (detected_map, openpose_dict)

        return detected_map