File size: 3,671 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os

import cv2
import numpy as np
import torch
from PIL import Image

from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME
from .leres.depthmap import estimateboost, estimateleres
from .leres.multi_depth_model_woauxi import RelDepthModel
from .leres.net_tools import strip_prefix_if_present
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
from .pix2pix.options.test_options import TestOptions


class LeresDetector:
    def __init__(self, model, pix2pixmodel):
        self.model = model
        self.pix2pixmodel = pix2pixmodel

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="res101.pth", pix2pix_filename="latest_net_G.pth"):
        model_path = custom_hf_download(pretrained_model_or_path, filename)
        checkpoint = torch.load(model_path, map_location=torch.device('cpu'))

        model = RelDepthModel(backbone='resnext101')
        model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True)
        del checkpoint

        pix2pix_model_path = custom_hf_download(pretrained_model_or_path, pix2pix_filename)

        opt = TestOptions().parse()
        if not torch.cuda.is_available():
            opt.gpu_ids = []  # cpu mode
        pix2pixmodel = Pix2Pix4DepthModel(opt)
        pix2pixmodel.save_dir = os.path.dirname(pix2pix_model_path)
        pix2pixmodel.load_networks('latest')
        pix2pixmodel.eval()

        return cls(model, pix2pixmodel)

    def to(self, device):
        self.model.to(device)
        # TODO - refactor pix2pix implementation to support device migration
        # self.pix2pixmodel.to(device)
        return self

    def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs):
        input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
        detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)

        with torch.no_grad():
            if boost:
                depth = estimateboost(detected_map, self.model, 0, self.pix2pixmodel, max(detected_map.shape[1], detected_map.shape[0]))
            else:
                depth = estimateleres(detected_map, self.model, detected_map.shape[1], detected_map.shape[0])

            numbytes=2
            depth_min = depth.min()
            depth_max = depth.max()
            max_val = (2**(8*numbytes))-1

            # check output before normalizing and mapping to 16 bit
            if depth_max - depth_min > np.finfo("float").eps:
                out = max_val * (depth - depth_min) / (depth_max - depth_min)
            else:
                out = np.zeros(depth.shape)
            
            # single channel, 16 bit image
            depth_image = out.astype("uint16")

            # convert to uint8
            depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0))

            # remove near
            if thr_a != 0:
                thr_a = ((thr_a/100)*255) 
                depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1]

            # invert image
            depth_image = cv2.bitwise_not(depth_image)

            # remove bg
            if thr_b != 0:
                thr_b = ((thr_b/100)*255)
                depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1]  

        detected_map = HWC3(remove_pad(depth_image))

        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)

        return detected_map