Spaces:
Configuration error
Configuration error
File size: 22,698 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import os
import torch
import gc
import numpy as np
from custom_controlnet_aux.mesh_graphormer.depth_preprocessor import Preprocessor
import torchvision.models as models
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Hand_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._mano import MANO, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
from custom_mesh_graphormer.utils.miscellaneous import set_seed
from argparse import Namespace
from pathlib import Path
import cv2
from torchvision import transforms
import numpy as np
import cv2
from trimesh import Trimesh
from trimesh.ray.ray_triangle import RayMeshIntersector
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from torchvision import transforms
from pathlib import Path
from custom_controlnet_aux.util import custom_hf_download
import custom_mesh_graphormer
from comfy.model_management import soft_empty_cache
from packaging import version
args = Namespace(
num_workers=4,
img_scale_factor=1,
image_file_or_path=os.path.join('', 'MeshGraphormer', 'samples', 'hand'),
model_name_or_path=str(Path(custom_mesh_graphormer.__file__).parent / "modeling/bert/bert-base-uncased"),
resume_checkpoint=None,
output_dir='output/',
config_name='',
a='hrnet-w64',
arch='hrnet-w64',
num_hidden_layers=4,
hidden_size=-1,
num_attention_heads=4,
intermediate_size=-1,
input_feat_dim='2051,512,128',
hidden_feat_dim='1024,256,64',
which_gcn='0,0,1',
mesh_type='hand',
run_eval_only=True,
device="cpu",
seed=88,
hrnet_checkpoint=custom_hf_download("hr16/ControlNet-HandRefiner-pruned", 'hrnetv2_w64_imagenet_pretrained.pth')
)
#Since mediapipe v0.10.5, the hand category has been correct
if version.parse(mp.__version__) >= version.parse('0.10.5'):
true_hand_category = {"Right": "right", "Left": "left"}
else:
true_hand_category = {"Right": "left", "Left": "right"}
class MeshGraphormerMediapipe(Preprocessor):
def __init__(self, args=args, detect_thr=0.6, presence_thr=0.6) -> None:
#global logger
# Setup CUDA, GPU & distributed training
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
#mkdir(args.output_dir)
#logger = setup_logger("Graphormer", args.output_dir, get_rank())
set_seed(args.seed, args.num_gpus)
#logger.info("Using {} GPUs".format(args.num_gpus))
# Mesh and MANO utils
mano_model = MANO().to(args.device)
mano_model.layer = mano_model.layer.to(args.device)
mesh_sampler = Mesh(device=args.device)
# Renderer for visualization
# renderer = Renderer(faces=mano_model.face)
# Load pretrained model
trans_encoder = []
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
output_feat_dim = input_feat_dim[1:] + [3]
# which encoder block to have graph convs
which_blk_graph = [int(item) for item in args.which_gcn.split(',')]
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
# if only run eval, load checkpoint
#logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
_model = torch.load(args.resume_checkpoint)
else:
# init three transformer-encoder blocks in a loop
for i in range(len(output_feat_dim)):
config_class, model_class = BertConfig, Graphormer
config = config_class.from_pretrained(args.config_name if args.config_name \
else args.model_name_or_path)
config.output_attentions = False
config.img_feature_dim = input_feat_dim[i]
config.output_feature_dim = output_feat_dim[i]
args.hidden_size = hidden_feat_dim[i]
args.intermediate_size = int(args.hidden_size*2)
if which_blk_graph[i]==1:
config.graph_conv = True
#logger.info("Add Graph Conv")
else:
config.graph_conv = False
config.mesh_type = args.mesh_type
# update model structure if specified in arguments
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
for idx, param in enumerate(update_params):
arg_param = getattr(args, param)
config_param = getattr(config, param)
if arg_param > 0 and arg_param != config_param:
#logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
setattr(config, param, arg_param)
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
model = model_class(config=config)
#logger.info("Init model from scratch.")
trans_encoder.append(model)
# create backbone model
if args.arch=='hrnet':
hrnet_yaml = Path(__file__).parent / 'cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = args.hrnet_checkpoint
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
#logger.info('=> loading hrnet-v2-w40 model')
elif args.arch=='hrnet-w64':
hrnet_yaml = Path(__file__).parent / 'cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = args.hrnet_checkpoint
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
#logger.info('=> loading hrnet-v2-w64 model')
else:
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# remove the last fc layer
backbone = torch.nn.Sequential(*list(backbone.children())[:-1])
trans_encoder = torch.nn.Sequential(*trans_encoder)
total_params = sum(p.numel() for p in trans_encoder.parameters())
#logger.info('Graphormer encoders total parameters: {}'.format(total_params))
backbone_total_params = sum(p.numel() for p in backbone.parameters())
#logger.info('Backbone total parameters: {}'.format(backbone_total_params))
# build end-to-end Graphormer network (CNN backbone + multi-layer Graphormer encoder)
_model = Graphormer_Network(args, config, backbone, trans_encoder)
if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
# for fine-tuning or resume training or inference, load weights from checkpoint
#logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
# workaround approach to load sparse tensor in graph conv.
state_dict = torch.load(args.resume_checkpoint)
_model.load_state_dict(state_dict, strict=False)
del state_dict
gc.collect()
soft_empty_cache()
# update configs to enable attention outputs
setattr(_model.trans_encoder[-1].config,'output_attentions', True)
setattr(_model.trans_encoder[-1].config,'output_hidden_states', True)
_model.trans_encoder[-1].bert.encoder.output_attentions = True
_model.trans_encoder[-1].bert.encoder.output_hidden_states = True
for iter_layer in range(4):
_model.trans_encoder[-1].bert.encoder.layer[iter_layer].attention.self.output_attentions = True
for inter_block in range(3):
setattr(_model.trans_encoder[-1].config,'device', args.device)
_model.to(args.device)
self._model = _model
self.mano_model = mano_model
self.mesh_sampler = mesh_sampler
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
#Fix File loading is not yet supported on Windows
with open(str( Path(__file__).parent / "hand_landmarker.task" ), 'rb') as file:
model_data = file.read()
base_options = python.BaseOptions(model_asset_buffer=model_data)
options = vision.HandLandmarkerOptions(base_options=base_options,
min_hand_detection_confidence=detect_thr,
min_hand_presence_confidence=presence_thr,
min_tracking_confidence=0.6,
num_hands=2)
self.detector = vision.HandLandmarker.create_from_options(options)
def get_rays(self, W, H, fx, fy, cx, cy, c2w_t, center_pixels): # rot = I
j, i = np.meshgrid(np.arange(H, dtype=np.float32), np.arange(W, dtype=np.float32))
if center_pixels:
i = i.copy() + 0.5
j = j.copy() + 0.5
directions = np.stack([(i - cx) / fx, (j - cy) / fy, np.ones_like(i)], -1)
directions /= np.linalg.norm(directions, axis=-1, keepdims=True)
rays_o = np.expand_dims(c2w_t,0).repeat(H*W, 0)
rays_d = directions # (H, W, 3)
rays_d = (rays_d / np.linalg.norm(rays_d, axis=-1, keepdims=True)).reshape(-1,3)
return rays_o, rays_d
def get_mask_bounding_box(self, extrema, H, W, padding=30, dynamic_resize=0.15):
x_min, x_max, y_min, y_max = extrema
bb_xpad = max(int((x_max - x_min + 1) * dynamic_resize), padding)
bb_ypad = max(int((y_max - y_min + 1) * dynamic_resize), padding)
bbx_min = np.max((x_min - bb_xpad, 0))
bbx_max = np.min((x_max + bb_xpad, W-1))
bby_min = np.max((y_min - bb_ypad, 0))
bby_max = np.min((y_max + bb_ypad, H-1))
return bbx_min, bbx_max, bby_min, bby_max
def run_inference(self, img, Graphormer_model, mano, mesh_sampler, scale, crop_len):
global args
H, W = int(crop_len), int(crop_len)
Graphormer_model.eval()
mano.eval()
device = next(Graphormer_model.parameters()).device
with torch.no_grad():
img_tensor = self.transform(img)
batch_imgs = torch.unsqueeze(img_tensor, 0).to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices, hidden_states, att = Graphormer_model(batch_imgs, mano, mesh_sampler)
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of mesh
#pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
#pred_2d_coarse_vertices_from_mesh = orthographic_projection(pred_vertices_sub.contiguous(), pred_camera.contiguous())
pred_camera = pred_camera.cpu()
pred_vertices = pred_vertices.cpu()
mesh = Trimesh(vertices=pred_vertices[0], faces=mano.face)
res = crop_len
focal_length = 1000 * scale
camera_t = np.array([-pred_camera[1], -pred_camera[2], -2*focal_length/(res * pred_camera[0] +1e-9)])
pred_3d_joints_camera = pred_3d_joints_from_mesh.cpu()[0] - camera_t
z_3d_dist = pred_3d_joints_camera[:,2].clone()
pred_2d_joints_img_space = ((pred_3d_joints_camera/z_3d_dist[:,None]) * np.array((focal_length, focal_length, 1)))[:,:2] + np.array((W/2, H/2))
rays_o, rays_d = self.get_rays(W, H, focal_length, focal_length, W/2, H/2, camera_t, True)
coords = np.array(list(np.ndindex(H,W))).reshape(H,W,-1).transpose(1,0,2).reshape(-1,2)
intersector = RayMeshIntersector(mesh)
points, index_ray, _ = intersector.intersects_location(rays_o, rays_d, multiple_hits=False)
tri_index = intersector.intersects_first(rays_o, rays_d)
tri_index = tri_index[index_ray]
assert len(index_ray) == len(tri_index)
discriminator = (np.sum(mesh.face_normals[tri_index]* rays_d[index_ray], axis=-1)<= 0)
points = points[discriminator] # ray intesects in interior faces, discard them
if len(points) == 0:
return None, None
depth = (points + camera_t)[:,-1]
index_ray = index_ray[discriminator]
pixel_ray = coords[index_ray]
minval = np.min(depth)
maxval = np.max(depth)
depthmap = np.zeros([H,W])
depthmap[pixel_ray[:, 0], pixel_ray[:, 1]] = 1.0 - (0.8 * (depth - minval) / (maxval - minval))
depthmap *= 255
return depthmap, pred_2d_joints_img_space
def get_depth(self, np_image, padding):
info = {}
# STEP 3: Load the input image.
#https://stackoverflow.com/a/76407270
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np_image.copy())
# STEP 4: Detect hand landmarks from the input image.
detection_result = self.detector.detect(image)
handedness_list = detection_result.handedness
hand_landmarks_list = detection_result.hand_landmarks
raw_image = image.numpy_view()
H, W, C = raw_image.shape
# HANDLANDMARKS CAN BE EMPTY, HANDLE THIS!
if len(hand_landmarks_list) == 0:
return None, None, None
raw_image = raw_image[:, :, :3]
padded_image = np.zeros((H*2, W*2, 3))
padded_image[int(1/2 * H):int(3/2 * H), int(1/2 * W):int(3/2 * W)] = raw_image
hand_landmarks_list, handedness_list = zip(
*sorted(
zip(hand_landmarks_list, handedness_list), key=lambda x: x[0][9].z, reverse=True
)
)
padded_depthmap = np.zeros((H*2, W*2))
mask = np.zeros((H, W))
crop_boxes = []
#bboxes = []
groundtruth_2d_keypoints = []
hands = []
depth_failure = False
crop_lens = []
abs_boxes = []
for idx in range(len(hand_landmarks_list)):
hand = true_hand_category[handedness_list[idx][0].category_name]
hands.append(hand)
hand_landmarks = hand_landmarks_list[idx]
handedness = handedness_list[idx]
height, width, _ = raw_image.shape
x_coordinates = [landmark.x for landmark in hand_landmarks]
y_coordinates = [landmark.y for landmark in hand_landmarks]
# x_min, x_max, y_min, y_max: extrema from mediapipe keypoint detection
x_min = int(min(x_coordinates) * width)
x_max = int(max(x_coordinates) * width)
x_c = (x_min + x_max)//2
y_min = int(min(y_coordinates) * height)
y_max = int(max(y_coordinates) * height)
y_c = (y_min + y_max)//2
abs_boxes.append([x_min, x_max, y_min, y_max])
#if x_max - x_min < 60 or y_max - y_min < 60:
# continue
crop_len = (max(x_max - x_min, y_max - y_min) * 1.6) //2 * 2
# crop_x_min, crop_x_max, crop_y_min, crop_y_max: bounding box for mesh reconstruction
crop_x_min = int(x_c - (crop_len/2 - 1) + W/2)
crop_x_max = int(x_c + crop_len/2 + W/2)
crop_y_min = int(y_c - (crop_len/2 - 1) + H/2)
crop_y_max = int(y_c + crop_len/2 + H/2)
cropped = padded_image[crop_y_min:crop_y_max+1, crop_x_min:crop_x_max+1]
crop_boxes.append([crop_y_min, crop_y_max, crop_x_min, crop_x_max])
crop_lens.append(crop_len)
if hand == "left":
cropped = cv2.flip(cropped, 1)
if crop_len < 224:
graphormer_input = cv2.resize(cropped, (224, 224), interpolation=cv2.INTER_CUBIC)
else:
graphormer_input = cv2.resize(cropped, (224, 224), interpolation=cv2.INTER_AREA)
scale = crop_len/224
cropped_depthmap, pred_2d_keypoints = self.run_inference(graphormer_input.astype(np.uint8), self._model, self.mano_model, self.mesh_sampler, scale, int(crop_len))
if cropped_depthmap is None:
depth_failure = True
break
#keypoints_image_space = pred_2d_keypoints * (crop_y_max - crop_y_min + 1)/224
groundtruth_2d_keypoints.append(pred_2d_keypoints)
if hand == "left":
cropped_depthmap = cv2.flip(cropped_depthmap, 1)
resized_cropped_depthmap = cv2.resize(cropped_depthmap, (int(crop_len), int(crop_len)), interpolation=cv2.INTER_LINEAR)
nonzero_y, nonzero_x = (resized_cropped_depthmap != 0).nonzero()
if len(nonzero_y) == 0 or len(nonzero_x) == 0:
depth_failure = True
break
padded_depthmap[crop_y_min+nonzero_y, crop_x_min+nonzero_x] = resized_cropped_depthmap[nonzero_y, nonzero_x]
# nonzero stands for nonzero value on the depth map
# coordinates of nonzero depth pixels in original image space
original_nonzero_x = crop_x_min+nonzero_x - int(W/2)
original_nonzero_y = crop_y_min+nonzero_y - int(H/2)
nonzerox_min = min(np.min(original_nonzero_x), x_min)
nonzerox_max = max(np.max(original_nonzero_x), x_max)
nonzeroy_min = min(np.min(original_nonzero_y), y_min)
nonzeroy_max = max(np.max(original_nonzero_y), y_max)
bbx_min, bbx_max, bby_min, bby_max = self.get_mask_bounding_box((nonzerox_min, nonzerox_max, nonzeroy_min, nonzeroy_max), H, W, padding)
mask[bby_min:bby_max+1, bbx_min:bbx_max+1] = 1.0
#bboxes.append([int(bbx_min), int(bbx_max), int(bby_min), int(bby_max)])
if depth_failure:
#print("cannot detect normal hands")
return None, None, None
depthmap = padded_depthmap[int(1/2 * H):int(3/2 * H), int(1/2 * W):int(3/2 * W)].astype(np.uint8)
mask = (255.0 * mask).astype(np.uint8)
info["groundtruth_2d_keypoints"] = groundtruth_2d_keypoints
info["hands"] = hands
info["crop_boxes"] = crop_boxes
info["crop_lens"] = crop_lens
info["abs_boxes"] = abs_boxes
return depthmap, mask, info
def get_keypoints(self, img, Graphormer_model, mano, mesh_sampler, scale, crop_len):
global args
H, W = int(crop_len), int(crop_len)
Graphormer_model.eval()
mano.eval()
device = next(Graphormer_model.parameters()).device
with torch.no_grad():
img_tensor = self.transform(img)
#print(img_tensor)
batch_imgs = torch.unsqueeze(img_tensor, 0).to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices, hidden_states, att = Graphormer_model(batch_imgs, mano, mesh_sampler)
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of mesh
#pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
#pred_2d_coarse_vertices_from_mesh = orthographic_projection(pred_vertices_sub.contiguous(), pred_camera.contiguous())
pred_camera = pred_camera.cpu()
pred_vertices = pred_vertices.cpu()
#
res = crop_len
focal_length = 1000 * scale
camera_t = np.array([-pred_camera[1], -pred_camera[2], -2*focal_length/(res * pred_camera[0] +1e-9)])
pred_3d_joints_camera = pred_3d_joints_from_mesh.cpu()[0] - camera_t
z_3d_dist = pred_3d_joints_camera[:,2].clone()
pred_2d_joints_img_space = ((pred_3d_joints_camera/z_3d_dist[:,None]) * np.array((focal_length, focal_length, 1)))[:,:2] + np.array((W/2, H/2))
return pred_2d_joints_img_space
def eval_mpjpe(self, sample, info):
H, W, C = sample.shape
padded_image = np.zeros((H*2, W*2, 3))
padded_image[int(1/2 * H):int(3/2 * H), int(1/2 * W):int(3/2 * W)] = sample
crop_boxes = info["crop_boxes"]
hands = info["hands"]
groundtruth_2d_keypoints = info["groundtruth_2d_keypoints"]
crop_lens = info["crop_lens"]
pjpe = 0
for i in range(len(crop_boxes)):#box in crop_boxes:
crop_y_min, crop_y_max, crop_x_min, crop_x_max = crop_boxes[i]
cropped = padded_image[crop_y_min:crop_y_max+1, crop_x_min:crop_x_max+1]
hand = hands[i]
if hand == "left":
cropped = cv2.flip(cropped, 1)
crop_len = crop_lens[i]
scale = crop_len/224
if crop_len < 224:
graphormer_input = cv2.resize(cropped, (224, 224), interpolation=cv2.INTER_CUBIC)
else:
graphormer_input = cv2.resize(cropped, (224, 224), interpolation=cv2.INTER_AREA)
generated_keypoint = self.get_keypoints(graphormer_input.astype(np.uint8), self._model, self.mano_model, self.mesh_sampler, scale, crop_len)
#generated_keypoint = generated_keypoint * ((crop_y_max - crop_y_min + 1)/224)
pjpe += np.sum(np.sqrt(np.sum(((generated_keypoint - groundtruth_2d_keypoints[i]) ** 2).numpy(), axis=1)))
pass
mpjpe = pjpe/(len(crop_boxes) * 21)
return mpjpe
|