File size: 2,186 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Hello, welcome on board,
"""
from __future__ import print_function

import os
import cv2
import numpy as np

import torch

from .ted import TED  # TEED architecture
from einops import rearrange
from custom_controlnet_aux.util import safe_step, custom_hf_download, BDS_MODEL_NAME, common_input_validate, resize_image_with_pad, HWC3
from PIL import Image


class TEDDetector:
    def __init__(self, model):
        self.model = model
        self.device = "cpu"

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path=BDS_MODEL_NAME, filename="7_model.pth", subfolder="Annotators"):
        model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder)
        model = TED()
        model.load_state_dict(torch.load(model_path, map_location='cpu'))
        model.eval()
        return cls(model)
    
    def to(self, device):
        self.model.to(device)
        self.device = device
        return self
    

    def __call__(self, input_image, detect_resolution=512, safe_steps=2, upscale_method="INTER_CUBIC", output_type="pil", **kwargs):
        input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
        input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)

        H, W, _ = input_image.shape
        with torch.no_grad():
            image_teed = torch.from_numpy(input_image.copy()).float().to(self.device)
            image_teed = rearrange(image_teed, 'h w c -> 1 c h w')
            edges = self.model(image_teed)
            edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
            edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
            edges = np.stack(edges, axis=2)
            edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
            if safe_steps != 0:
                edge = safe_step(edge, safe_steps)
            edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
    
        detected_map = remove_pad(HWC3(edge))
        if output_type == "pil":
            detected_map = Image.fromarray(detected_map[..., :3])
        
        return detected_map