File size: 6,168 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import re
from PIL import Image
import sys
import cv2
import json
import os


def read_img(filename):
    # convert to RGB for scene flow finalpass data
    img = np.array(Image.open(filename).convert('RGB')).astype(np.float32)
    return img


def read_disp(filename, subset=False, vkitti2=False, sintel=False,
              tartanair=False, instereo2k=False, crestereo=False,
              fallingthings=False,
              argoverse=False,
              raw_disp_png=False,
              ):
    # Scene Flow dataset
    if filename.endswith('pfm'):
        # For finalpass and cleanpass, gt disparity is positive, subset is negative
        disp = np.ascontiguousarray(_read_pfm(filename)[0])
        if subset:
            disp = -disp
    # VKITTI2 dataset
    elif vkitti2:
        disp = _read_vkitti2_disp(filename)
    # Sintel
    elif sintel:
        disp = _read_sintel_disparity(filename)
    elif tartanair:
        disp = _read_tartanair_disp(filename)
    elif instereo2k:
        disp = _read_instereo2k_disp(filename)
    elif crestereo:
        disp = _read_crestereo_disp(filename)
    elif fallingthings:
        disp = _read_fallingthings_disp(filename)
    elif argoverse:
        disp = _read_argoverse_disp(filename)
    elif raw_disp_png:
        disp = np.array(Image.open(filename)).astype(np.float32)
    # KITTI
    elif filename.endswith('png'):
        disp = _read_kitti_disp(filename)
    elif filename.endswith('npy'):
        disp = np.load(filename)
    else:
        raise Exception('Invalid disparity file format!')
    return disp  # [H, W]


def _read_pfm(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header.decode("ascii") == 'PF':
        color = True
    elif header.decode("ascii") == 'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
    if dim_match:
        width, height = list(map(int, dim_match.groups()))
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().decode("ascii").rstrip())
    if scale < 0:  # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>'  # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data, scale


def write_pfm(file, image, scale=1):
    file = open(file, 'wb')

    color = None

    if image.dtype.name != 'float32':
        raise Exception('Image dtype must be float32.')

    image = np.flipud(image)

    if len(image.shape) == 3 and image.shape[2] == 3:  # color image
        color = True
    elif len(image.shape) == 2 or len(
            image.shape) == 3 and image.shape[2] == 1:  # greyscale
        color = False
    else:
        raise Exception(
            'Image must have H x W x 3, H x W x 1 or H x W dimensions.')

    file.write(b'PF\n' if color else b'Pf\n')
    file.write(b'%d %d\n' % (image.shape[1], image.shape[0]))

    endian = image.dtype.byteorder

    if endian == '<' or endian == '=' and sys.byteorder == 'little':
        scale = -scale

    file.write(b'%f\n' % scale)

    image.tofile(file)


def _read_kitti_disp(filename):
    depth = np.array(Image.open(filename))
    depth = depth.astype(np.float32) / 256.
    return depth


def _read_vkitti2_disp(filename):
    # read depth
    depth = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)  # in cm
    depth = (depth / 100).astype(np.float32)  # depth clipped to 655.35m for sky

    valid = (depth > 0) & (depth < 655)  # depth clipped to 655.35m for sky

    # convert to disparity
    focal_length = 725.0087  # in pixels
    baseline = 0.532725  # meter

    disp = baseline * focal_length / depth

    disp[~valid] = 0.000001  # invalid as very small value

    return disp


def _read_sintel_disparity(filename):
    """ Return disparity read from filename. """
    f_in = np.array(Image.open(filename))

    d_r = f_in[:, :, 0].astype('float32')
    d_g = f_in[:, :, 1].astype('float32')
    d_b = f_in[:, :, 2].astype('float32')

    depth = d_r * 4 + d_g / (2 ** 6) + d_b / (2 ** 14)
    return depth


def _read_tartanair_disp(filename):
    # the infinite distant object such as the sky has a large depth value (e.g. 10000)
    depth = np.load(filename)

    # change to disparity image
    disparity = 80.0 / depth

    return disparity


def _read_instereo2k_disp(filename):
    disp = np.array(Image.open(filename))
    disp = disp.astype(np.float32) / 100.
    return disp


def _read_crestereo_disp(filename):
    disp = np.array(Image.open(filename))
    return disp.astype(np.float32) / 32.


def _read_fallingthings_disp(filename):
    depth = np.array(Image.open(filename))
    camera_file = os.path.join(os.path.dirname(filename), '_camera_settings.json')
    with open(camera_file, 'r') as f:
        intrinsics = json.load(f)
    fx = intrinsics['camera_settings'][0]['intrinsic_settings']['fx']
    disp = (fx * 6.0 * 100) / depth.astype(np.float32)

    return disp


def _read_argoverse_disp(filename):
    disparity_map = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
    return np.float32(disparity_map) / 256.


def extract_video(video_name):
    cap = cv2.VideoCapture(video_name)
    assert cap.isOpened(), f'Failed to load video file {video_name}'
    # get video info
    size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
            int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    fps = cap.get(cv2.CAP_PROP_FPS)

    print('video size (hxw): %dx%d' % (size[1], size[0]))
    print('fps: %d' % fps)

    imgs = []
    while cap.isOpened():
        # get frames
        flag, img = cap.read()
        if not flag:
            break
        # to rgb format
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        imgs.append(img)

    return imgs, fps