Spaces:
Configuration error
Configuration error
| #credit to huchenlei for this module | |
| #from https://github.com/huchenlei/ComfyUI-IC-Light-Native | |
| import torch | |
| import numpy as np | |
| from typing import Tuple, TypedDict, Callable | |
| import comfy.model_management | |
| from comfy.sd import load_unet | |
| from comfy.ldm.models.autoencoder import AutoencoderKL | |
| from comfy.model_base import BaseModel | |
| from comfy.model_patcher import ModelPatcher | |
| from PIL import Image | |
| from nodes import VAEEncode | |
| from ..libs.image import np2tensor, pil2tensor | |
| class UnetParams(TypedDict): | |
| input: torch.Tensor | |
| timestep: torch.Tensor | |
| c: dict | |
| cond_or_uncond: torch.Tensor | |
| class VAEEncodeArgMax(VAEEncode): | |
| def encode(self, vae, pixels): | |
| assert isinstance( | |
| vae.first_stage_model, AutoencoderKL | |
| ), "ArgMax only supported for AutoencoderKL" | |
| original_sample_mode = vae.first_stage_model.regularization.sample | |
| vae.first_stage_model.regularization.sample = False | |
| ret = super().encode(vae, pixels) | |
| vae.first_stage_model.regularization.sample = original_sample_mode | |
| return ret | |
| class ICLight: | |
| def apply_c_concat(params: UnetParams, concat_conds) -> UnetParams: | |
| """Apply c_concat on unet call.""" | |
| sample = params["input"] | |
| params["c"]["c_concat"] = torch.cat( | |
| ( | |
| [concat_conds.to(sample.device)] | |
| * (sample.shape[0] // concat_conds.shape[0]) | |
| ), | |
| dim=0, | |
| ) | |
| return params | |
| def create_custom_conv( | |
| original_conv: torch.nn.Module, | |
| dtype: torch.dtype, | |
| device=torch.device, | |
| ) -> torch.nn.Module: | |
| with torch.no_grad(): | |
| new_conv_in = torch.nn.Conv2d( | |
| 8, | |
| original_conv.out_channels, | |
| original_conv.kernel_size, | |
| original_conv.stride, | |
| original_conv.padding, | |
| ) | |
| new_conv_in.weight.zero_() | |
| new_conv_in.weight[:, :4, :, :].copy_(original_conv.weight) | |
| new_conv_in.bias = original_conv.bias | |
| return new_conv_in.to(dtype=dtype, device=device) | |
| def generate_lighting_image(self, original_image, direction): | |
| _, image_height, image_width, _ = original_image.shape | |
| match direction: | |
| case 'Left Light': | |
| gradient = np.linspace(255, 0, image_width) | |
| image = np.tile(gradient, (image_height, 1)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Right Light': | |
| gradient = np.linspace(0, 255, image_width) | |
| image = np.tile(gradient, (image_height, 1)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Top Light': | |
| gradient = np.linspace(255, 0, image_height)[:, None] | |
| image = np.tile(gradient, (1, image_width)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Bottom Light': | |
| gradient = np.linspace(0, 255, image_height)[:, None] | |
| image = np.tile(gradient, (1, image_width)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Circle Light': | |
| x = np.linspace(-1, 1, image_width) | |
| y = np.linspace(-1, 1, image_height) | |
| x, y = np.meshgrid(x, y) | |
| r = np.sqrt(x ** 2 + y ** 2) | |
| r = r / r.max() | |
| color1 = np.array([0, 0, 0])[np.newaxis, np.newaxis, :] | |
| color2 = np.array([255, 255, 255])[np.newaxis, np.newaxis, :] | |
| gradient = (color1 * r[..., np.newaxis] + color2 * (1 - r)[..., np.newaxis]).astype(np.uint8) | |
| image = pil2tensor(Image.fromarray(gradient)) | |
| return image | |
| case _: | |
| image = pil2tensor(Image.new('RGB', (1, 1), (0, 0, 0))) | |
| return image | |
| def generate_source_image(self, original_image, source): | |
| batch_size, image_height, image_width, _ = original_image.shape | |
| match source: | |
| case 'Use Flipped Background Image': | |
| if batch_size < 2: | |
| raise ValueError('Must be at least 2 image to use flipped background image.') | |
| original_image = [img.unsqueeze(0) for img in original_image] | |
| image = torch.flip(original_image[1], [2]) | |
| return image | |
| case 'Ambient': | |
| input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 | |
| return np2tensor(input_bg) | |
| case 'Left Light': | |
| gradient = np.linspace(224, 32, image_width) | |
| image = np.tile(gradient, (image_height, 1)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Right Light': | |
| gradient = np.linspace(32, 224, image_width) | |
| image = np.tile(gradient, (image_height, 1)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Top Light': | |
| gradient = np.linspace(224, 32, image_height)[:, None] | |
| image = np.tile(gradient, (1, image_width)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case 'Bottom Light': | |
| gradient = np.linspace(32, 224, image_height)[:, None] | |
| image = np.tile(gradient, (1, image_width)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| return np2tensor(input_bg) | |
| case _: | |
| image = pil2tensor(Image.new('RGB', (1, 1), (0, 0, 0))) | |
| return image | |
| def apply(self, ic_model_path, model, c_concat: dict, ic_model=None) -> Tuple[ModelPatcher]: | |
| device = comfy.model_management.get_torch_device() | |
| dtype = comfy.model_management.unet_dtype() | |
| work_model = model.clone() | |
| # Apply scale factor. | |
| base_model: BaseModel = work_model.model | |
| scale_factor = base_model.model_config.latent_format.scale_factor | |
| # [B, 4, H, W] | |
| concat_conds: torch.Tensor = c_concat["samples"] * scale_factor | |
| # [1, 4 * B, H, W] | |
| concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
| def unet_dummy_apply(unet_apply: Callable, params: UnetParams): | |
| """A dummy unet apply wrapper serving as the endpoint of wrapper | |
| chain.""" | |
| return unet_apply(x=params["input"], t=params["timestep"], **params["c"]) | |
| existing_wrapper = work_model.model_options.get( | |
| "model_function_wrapper", unet_dummy_apply | |
| ) | |
| def wrapper_func(unet_apply: Callable, params: UnetParams): | |
| return existing_wrapper(unet_apply, params=self.apply_c_concat(params, concat_conds)) | |
| work_model.set_model_unet_function_wrapper(wrapper_func) | |
| if not ic_model: | |
| ic_model = load_unet(ic_model_path) | |
| ic_model_state_dict = ic_model.model.diffusion_model.state_dict() | |
| work_model.add_patches( | |
| patches={ | |
| ("diffusion_model." + key): ( | |
| 'diff', | |
| [ | |
| value.to(dtype=dtype, device=device), | |
| {"pad_weight": key == 'input_blocks.0.0.weight'} | |
| ] | |
| ) | |
| for key, value in ic_model_state_dict.items() | |
| } | |
| ) | |
| return (work_model, ic_model) |