JasonSmithSO's picture
Upload 777 files
0034848 verified
raw
history blame
18.8 kB
import random
import warnings
from typing import Any, Dict, List, Sequence, Tuple
import cv2
import numpy as np
from custom_albumentations import random_utils
from custom_albumentations.augmentations import functional as FMain
from custom_albumentations.augmentations.blur import functional as F
from custom_albumentations.core.transforms_interface import (
ImageOnlyTransform,
ScaleFloatType,
ScaleIntType,
to_tuple,
)
__all__ = ["Blur", "MotionBlur", "GaussianBlur", "GlassBlur", "AdvancedBlur", "MedianBlur", "Defocus", "ZoomBlur"]
class Blur(ImageOnlyTransform):
"""Blur the input image using a random-sized kernel.
Args:
blur_limit (int, (int, int)): maximum kernel size for blurring the input image.
Should be in range [3, inf). Default: (3, 7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
return F.blur(img, ksize)
def get_params(self) -> Dict[str, Any]:
return {"ksize": int(random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2))))}
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return ("blur_limit",)
class MotionBlur(Blur):
"""Apply motion blur to the input image using a random-sized kernel.
Args:
blur_limit (int): maximum kernel size for blurring the input image.
Should be in range [3, inf). Default: (3, 7).
allow_shifted (bool): if set to true creates non shifted kernels only,
otherwise creates randomly shifted kernels. Default: True.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = 7,
allow_shifted: bool = True,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(blur_limit=blur_limit, always_apply=always_apply, p=p)
self.allow_shifted = allow_shifted
if not allow_shifted and self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
raise ValueError(f"Blur limit must be odd when centered=True. Got: {self.blur_limit}")
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return super().get_transform_init_args_names() + ("allow_shifted",)
def apply(self, img: np.ndarray, kernel: np.ndarray = None, **params) -> np.ndarray: # type: ignore
return FMain.convolve(img, kernel=kernel)
def get_params(self) -> Dict[str, Any]:
ksize = random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2)))
if ksize <= 2:
raise ValueError("ksize must be > 2. Got: {}".format(ksize))
kernel = np.zeros((ksize, ksize), dtype=np.uint8)
x1, x2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
if x1 == x2:
y1, y2 = random.sample(range(ksize), 2)
else:
y1, y2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
def make_odd_val(v1, v2):
len_v = abs(v1 - v2) + 1
if len_v % 2 != 1:
if v2 > v1:
v2 -= 1
else:
v1 -= 1
return v1, v2
if not self.allow_shifted:
x1, x2 = make_odd_val(x1, x2)
y1, y2 = make_odd_val(y1, y2)
xc = (x1 + x2) / 2
yc = (y1 + y2) / 2
center = ksize / 2 - 0.5
dx = xc - center
dy = yc - center
x1, x2 = [int(i - dx) for i in [x1, x2]]
y1, y2 = [int(i - dy) for i in [y1, y2]]
cv2.line(kernel, (x1, y1), (x2, y2), 1, thickness=1)
# Normalize kernel
return {"kernel": kernel.astype(np.float32) / np.sum(kernel)}
class MedianBlur(Blur):
"""Blur the input image using a median filter with a random aperture linear size.
Args:
blur_limit (int): maximum aperture linear size for blurring the input image.
Must be odd and in range [3, inf). Default: (3, 7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
super().__init__(blur_limit, always_apply, p)
if self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
raise ValueError("MedianBlur supports only odd blur limits.")
def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
return F.median_blur(img, ksize)
class GaussianBlur(ImageOnlyTransform):
"""Blur the input image using a Gaussian filter with a random kernel size.
Args:
blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigma_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigma_limit: ScaleFloatType = 0,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 0)
self.sigma_limit = to_tuple(sigma_limit if sigma_limit is not None else 0, 0)
if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0:
self.blur_limit = 3, max(3, self.blur_limit[1])
warnings.warn(
"blur_limit and sigma_limit minimum value can not be both equal to 0. "
"blur_limit minimum value changed to 3."
)
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("GaussianBlur supports only odd blur limits.")
def apply(self, img: np.ndarray, ksize: int = 3, sigma: float = 0, **params) -> np.ndarray:
return F.gaussian_blur(img, ksize, sigma=sigma)
def get_params(self) -> Dict[str, float]:
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1)
if ksize != 0 and ksize % 2 != 1:
ksize = (ksize + 1) % (self.blur_limit[1] + 1)
return {"ksize": ksize, "sigma": random.uniform(*self.sigma_limit)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("blur_limit", "sigma_limit")
class GlassBlur(Blur):
"""Apply glass noise to the input image.
Args:
sigma (float): standard deviation for Gaussian kernel.
max_delta (int): max distance between pixels which are swapped.
iterations (int): number of repeats.
Should be in range [1, inf). Default: (2).
mode (str): mode of computation: fast or exact. Default: "fast".
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Reference:
| https://arxiv.org/abs/1903.12261
| https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
"""
def __init__(
self,
sigma: float = 0.7,
max_delta: int = 4,
iterations: int = 2,
always_apply: bool = False,
mode: str = "fast",
p: float = 0.5,
):
super().__init__(always_apply=always_apply, p=p)
if iterations < 1:
raise ValueError(f"Iterations should be more or equal to 1, but we got {iterations}")
if mode not in ["fast", "exact"]:
raise ValueError(f"Mode should be 'fast' or 'exact', but we got {mode}")
self.sigma = sigma
self.max_delta = max_delta
self.iterations = iterations
self.mode = mode
def apply(self, img: np.ndarray, dxy: np.ndarray = None, **params) -> np.ndarray: # type: ignore
assert dxy is not None
return F.glass_blur(img, self.sigma, self.max_delta, self.iterations, dxy, self.mode)
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, np.ndarray]:
img = params["image"]
# generate array containing all necessary values for transformations
width_pixels = img.shape[0] - self.max_delta * 2
height_pixels = img.shape[1] - self.max_delta * 2
total_pixels = width_pixels * height_pixels
dxy = random_utils.randint(-self.max_delta, self.max_delta, size=(total_pixels, self.iterations, 2))
return {"dxy": dxy}
def get_transform_init_args_names(self) -> Tuple[str, str, str]:
return ("sigma", "max_delta", "iterations")
@property
def targets_as_params(self) -> List[str]:
return ["image"]
class AdvancedBlur(ImageOnlyTransform):
"""Blur the input image using a Generalized Normal filter with a randomly selected parameters.
This transform also adds multiplicative noise to generated kernel before convolution.
Args:
blur_limit: maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigmaX_limit: Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigmaX_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
sigmaY_limit: Same as `sigmaY_limit` for another dimension.
rotate_limit: Range from which a random angle used to rotate Gaussian kernel is picked.
If limit is a single int an angle is picked from (-rotate_limit, rotate_limit). Default: (-90, 90).
beta_limit: Distribution shape parameter, 1 is the normal distribution. Values below 1.0 make distribution
tails heavier than normal, values above 1.0 make it lighter than normal. Default: (0.5, 8.0).
noise_limit: Multiplicative factor that control strength of kernel noise. Must be positive and preferably
centered around 1.0. If set single value `noise_limit` will be in range (0, noise_limit).
Default: (0.75, 1.25).
p (float): probability of applying the transform. Default: 0.5.
Reference:
https://arxiv.org/abs/2107.10833
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigmaX_limit: ScaleFloatType = (0.2, 1.0),
sigmaY_limit: ScaleFloatType = (0.2, 1.0),
rotate_limit: ScaleIntType = 90,
beta_limit: ScaleFloatType = (0.5, 8.0),
noise_limit: ScaleFloatType = (0.9, 1.1),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
self.sigmaX_limit = self.__check_values(to_tuple(sigmaX_limit, 0.0), name="sigmaX_limit")
self.sigmaY_limit = self.__check_values(to_tuple(sigmaY_limit, 0.0), name="sigmaY_limit")
self.rotate_limit = to_tuple(rotate_limit)
self.beta_limit = to_tuple(beta_limit, low=0.0)
self.noise_limit = self.__check_values(to_tuple(noise_limit, 0.0), name="noise_limit")
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("AdvancedBlur supports only odd blur limits.")
if self.sigmaX_limit[0] == 0 and self.sigmaY_limit[0] == 0:
raise ValueError("sigmaX_limit and sigmaY_limit minimum value can not be both equal to 0.")
if not (self.beta_limit[0] < 1.0 < self.beta_limit[1]):
raise ValueError("Beta limit is expected to include 1.0")
@staticmethod
def __check_values(
value: Sequence[float], name: str, bounds: Tuple[float, float] = (0, float("inf"))
) -> Sequence[float]:
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError(f"{name} values should be between {bounds}")
return value
def apply(self, img: np.ndarray, kernel: np.ndarray = np.array(None), **params) -> np.ndarray:
return FMain.convolve(img, kernel=kernel)
def get_params(self) -> Dict[str, np.ndarray]:
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2)
sigmaX = random.uniform(*self.sigmaX_limit)
sigmaY = random.uniform(*self.sigmaY_limit)
angle = np.deg2rad(random.uniform(*self.rotate_limit))
# Split into 2 cases to avoid selection of narrow kernels (beta > 1) too often.
if random.random() < 0.5:
beta = random.uniform(self.beta_limit[0], 1)
else:
beta = random.uniform(1, self.beta_limit[1])
noise_matrix = random_utils.uniform(self.noise_limit[0], self.noise_limit[1], size=[ksize, ksize])
# Generate mesh grid centered at zero.
ax = np.arange(-ksize // 2 + 1.0, ksize // 2 + 1.0)
# Shape (ksize, ksize, 2)
grid = np.stack(np.meshgrid(ax, ax), axis=-1)
# Calculate rotated sigma matrix
d_matrix = np.array([[sigmaX**2, 0], [0, sigmaY**2]])
u_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
sigma_matrix = np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
inverse_sigma = np.linalg.inv(sigma_matrix)
# Described in "Parameter Estimation For Multivariate Generalized Gaussian Distributions"
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
# Add noise
kernel = kernel * noise_matrix
# Normalize kernel
kernel = kernel.astype(np.float32) / np.sum(kernel)
return {"kernel": kernel}
def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str]:
return (
"blur_limit",
"sigmaX_limit",
"sigmaY_limit",
"rotate_limit",
"beta_limit",
"noise_limit",
)
class Defocus(ImageOnlyTransform):
"""
Apply defocus transform. See https://arxiv.org/abs/1903.12261.
Args:
radius ((int, int) or int): range for radius of defocusing.
If limit is a single int, the range will be [1, limit]. Default: (3, 10).
alias_blur ((float, float) or float): range for alias_blur of defocusing (sigma of gaussian blur).
If limit is a single float, the range will be (0, limit). Default: (0.1, 0.5).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
Any
"""
def __init__(
self,
radius: ScaleIntType = (3, 10),
alias_blur: ScaleFloatType = (0.1, 0.5),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.radius = to_tuple(radius, low=1)
self.alias_blur = to_tuple(alias_blur, low=0)
if self.radius[0] <= 0:
raise ValueError("Parameter radius must be positive")
if self.alias_blur[0] < 0:
raise ValueError("Parameter alias_blur must be non-negative")
def apply(self, img: np.ndarray, radius: int = 3, alias_blur: float = 0.5, **params) -> np.ndarray:
return F.defocus(img, radius, alias_blur)
def get_params(self) -> Dict[str, Any]:
return {
"radius": random_utils.randint(self.radius[0], self.radius[1] + 1),
"alias_blur": random_utils.uniform(self.alias_blur[0], self.alias_blur[1]),
}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("radius", "alias_blur")
class ZoomBlur(ImageOnlyTransform):
"""
Apply zoom blur transform. See https://arxiv.org/abs/1903.12261.
Args:
max_factor ((float, float) or float): range for max factor for blurring.
If max_factor is a single float, the range will be (1, limit). Default: (1, 1.31).
All max_factor values should be larger than 1.
step_factor ((float, float) or float): If single float will be used as step parameter for np.arange.
If tuple of float step_factor will be in range `[step_factor[0], step_factor[1])`. Default: (0.01, 0.03).
All step_factor values should be positive.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
Any
"""
def __init__(
self,
max_factor: ScaleFloatType = 1.31,
step_factor: ScaleFloatType = (0.01, 0.03),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.max_factor = to_tuple(max_factor, low=1.0)
self.step_factor = to_tuple(step_factor, step_factor)
if self.max_factor[0] < 1:
raise ValueError("Max factor must be larger or equal 1")
if self.step_factor[0] <= 0:
raise ValueError("Step factor must be positive")
def apply(self, img: np.ndarray, zoom_factors: np.ndarray = np.array(None), **params) -> np.ndarray:
assert zoom_factors is not None
return F.zoom_blur(img, zoom_factors)
def get_params(self) -> Dict[str, Any]:
max_factor = random.uniform(self.max_factor[0], self.max_factor[1])
step_factor = random.uniform(self.step_factor[0], self.step_factor[1])
return {"zoom_factors": np.arange(1.0, max_factor, step_factor)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("max_factor", "step_factor")