JasonSmithSO's picture
Upload 777 files
0034848 verified
raw
history blame
12 kB
import math
import random
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import cv2
import numpy as np
from ...core.transforms_interface import (
BoxInternalType,
DualTransform,
FillValueType,
KeypointInternalType,
to_tuple,
)
from ..crops import functional as FCrops
from . import functional as F
__all__ = ["Rotate", "RandomRotate90", "SafeRotate"]
class RandomRotate90(DualTransform):
"""Randomly rotate the input by 90 degrees zero or more times.
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def apply(self, img, factor=0, **params):
"""
Args:
factor (int): number of times the input will be rotated by 90 degrees.
"""
return np.ascontiguousarray(np.rot90(img, factor))
def get_params(self):
# Random int in the range [0, 3]
return {"factor": random.randint(0, 3)}
def apply_to_bbox(self, bbox, factor=0, **params):
return F.bbox_rot90(bbox, factor, **params)
def apply_to_keypoint(self, keypoint, factor=0, **params):
return F.keypoint_rot90(keypoint, factor, **params)
def get_transform_init_args_names(self):
return ()
class Rotate(DualTransform):
"""Rotate the input by an angle selected randomly from the uniform distribution.
Args:
limit ((int, int) or int): range from which a random angle is picked. If limit is a single int
an angle is picked from (-limit, limit). Default: (-90, 90)
interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of:
cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101.
Default: cv2.BORDER_REFLECT_101
value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
mask_value (int, float,
list of ints,
list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks.
rotate_method (str): rotation method used for the bounding boxes. Should be one of "largest_box" or "ellipse".
Default: "largest_box"
crop_border (bool): If True would make a largest possible crop within rotated image
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def __init__(
self,
limit=90,
interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_REFLECT_101,
value=None,
mask_value=None,
rotate_method="largest_box",
crop_border=False,
always_apply=False,
p=0.5,
):
super(Rotate, self).__init__(always_apply, p)
self.limit = to_tuple(limit)
self.interpolation = interpolation
self.border_mode = border_mode
self.value = value
self.mask_value = mask_value
self.rotate_method = rotate_method
self.crop_border = crop_border
if rotate_method not in ["largest_box", "ellipse"]:
raise ValueError(f"Rotation method {self.rotate_method} is not valid.")
def apply(
self, img, angle=0, interpolation=cv2.INTER_LINEAR, x_min=None, x_max=None, y_min=None, y_max=None, **params
):
img_out = F.rotate(img, angle, interpolation, self.border_mode, self.value)
if self.crop_border:
img_out = FCrops.crop(img_out, x_min, y_min, x_max, y_max)
return img_out
def apply_to_mask(self, img, angle=0, x_min=None, x_max=None, y_min=None, y_max=None, **params):
img_out = F.rotate(img, angle, cv2.INTER_NEAREST, self.border_mode, self.mask_value)
if self.crop_border:
img_out = FCrops.crop(img_out, x_min, y_min, x_max, y_max)
return img_out
def apply_to_bbox(self, bbox, angle=0, x_min=None, x_max=None, y_min=None, y_max=None, cols=0, rows=0, **params):
bbox_out = F.bbox_rotate(bbox, angle, self.rotate_method, rows, cols)
if self.crop_border:
bbox_out = FCrops.bbox_crop(bbox_out, x_min, y_min, x_max, y_max, rows, cols)
return bbox_out
def apply_to_keypoint(
self, keypoint, angle=0, x_min=None, x_max=None, y_min=None, y_max=None, cols=0, rows=0, **params
):
keypoint_out = F.keypoint_rotate(keypoint, angle, rows, cols, **params)
if self.crop_border:
keypoint_out = FCrops.crop_keypoint_by_coords(keypoint_out, (x_min, y_min, x_max, y_max))
return keypoint_out
@staticmethod
def _rotated_rect_with_max_area(h, w, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
degrees), computes the width and height of the largest possible
axis-aligned rectangle (maximal area) within the rotated rectangle.
Code from: https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
angle = math.radians(angle)
width_is_longer = w >= h
side_long, side_short = (w, h) if width_is_longer else (h, w)
# since the solutions for angle, -angle and 180-angle are all the same,
# it is sufficient to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2.0 * sin_a * cos_a * side_long or abs(sin_a - cos_a) < 1e-10:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5 * side_short
wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a * cos_a - sin_a * sin_a
wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a
return dict(
x_min=max(0, int(w / 2 - wr / 2)),
x_max=min(w, int(w / 2 + wr / 2)),
y_min=max(0, int(h / 2 - hr / 2)),
y_max=min(h, int(h / 2 + hr / 2)),
)
@property
def targets_as_params(self) -> List[str]:
return ["image"]
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]:
out_params = {"angle": random.uniform(self.limit[0], self.limit[1])}
if self.crop_border:
h, w = params["image"].shape[:2]
out_params.update(self._rotated_rect_with_max_area(h, w, out_params["angle"]))
return out_params
def get_transform_init_args_names(self):
return ("limit", "interpolation", "border_mode", "value", "mask_value", "rotate_method", "crop_border")
class SafeRotate(DualTransform):
"""Rotate the input inside the input's frame by an angle selected randomly from the uniform distribution.
The resulting image may have artifacts in it. After rotation, the image may have a different aspect ratio, and
after resizing, it returns to its original shape with the original aspect ratio of the image. For these reason we
may see some artifacts.
Args:
limit ((int, int) or int): range from which a random angle is picked. If limit is a single int
an angle is picked from (-limit, limit). Default: (-90, 90)
interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of:
cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101.
Default: cv2.BORDER_REFLECT_101
value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
mask_value (int, float,
list of ints,
list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def __init__(
self,
limit: Union[float, Tuple[float, float]] = 90,
interpolation: int = cv2.INTER_LINEAR,
border_mode: int = cv2.BORDER_REFLECT_101,
value: FillValueType = None,
mask_value: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None,
always_apply: bool = False,
p: float = 0.5,
):
super(SafeRotate, self).__init__(always_apply, p)
self.limit = to_tuple(limit)
self.interpolation = interpolation
self.border_mode = border_mode
self.value = value
self.mask_value = mask_value
def apply(self, img: np.ndarray, matrix: np.ndarray = np.array(None), **params) -> np.ndarray:
return F.safe_rotate(img, matrix, self.interpolation, self.value, self.border_mode)
def apply_to_mask(self, img: np.ndarray, matrix: np.ndarray = np.array(None), **params) -> np.ndarray:
return F.safe_rotate(img, matrix, cv2.INTER_NEAREST, self.mask_value, self.border_mode)
def apply_to_bbox(self, bbox: BoxInternalType, cols: int = 0, rows: int = 0, **params) -> BoxInternalType:
return F.bbox_safe_rotate(bbox, params["matrix"], cols, rows)
def apply_to_keypoint(
self,
keypoint: KeypointInternalType,
angle: float = 0,
scale_x: float = 0,
scale_y: float = 0,
cols: int = 0,
rows: int = 0,
**params
) -> KeypointInternalType:
return F.keypoint_safe_rotate(keypoint, params["matrix"], angle, scale_x, scale_y, cols, rows)
@property
def targets_as_params(self) -> List[str]:
return ["image"]
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]:
angle = random.uniform(self.limit[0], self.limit[1])
image = params["image"]
h, w = image.shape[:2]
# https://stackoverflow.com/questions/43892506/opencv-python-rotate-image-without-cropping-sides
image_center = (w / 2, h / 2)
# Rotation Matrix
rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
# rotation calculates the cos and sin, taking absolutes of those.
abs_cos = abs(rotation_mat[0, 0])
abs_sin = abs(rotation_mat[0, 1])
# find the new width and height bounds
new_w = math.ceil(h * abs_sin + w * abs_cos)
new_h = math.ceil(h * abs_cos + w * abs_sin)
scale_x = w / new_w
scale_y = h / new_h
# Shift the image to create padding
rotation_mat[0, 2] += new_w / 2 - image_center[0]
rotation_mat[1, 2] += new_h / 2 - image_center[1]
# Rescale to original size
scale_mat = np.diag(np.ones(3))
scale_mat[0, 0] *= scale_x
scale_mat[1, 1] *= scale_y
_tmp = np.diag(np.ones(3))
_tmp[:2] = rotation_mat
_tmp = scale_mat @ _tmp
rotation_mat = _tmp[:2]
return {"matrix": rotation_mat, "angle": angle, "scale_x": scale_x, "scale_y": scale_y}
def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str]:
return ("limit", "interpolation", "border_mode", "value", "mask_value")