Spaces:
Configuration error
Configuration error
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import argparse | |
| import time | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.parallel | |
| from contextlib import suppress | |
| import geffnet | |
| from data import Dataset, create_loader, resolve_data_config | |
| from utils import accuracy, AverageMeter | |
| has_native_amp = False | |
| try: | |
| if getattr(torch.cuda.amp, 'autocast') is not None: | |
| has_native_amp = True | |
| except AttributeError: | |
| pass | |
| torch.backends.cudnn.benchmark = True | |
| parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') | |
| parser.add_argument('data', metavar='DIR', | |
| help='path to dataset') | |
| parser.add_argument('--model', '-m', metavar='MODEL', default='spnasnet1_00', | |
| help='model architecture (default: dpn92)') | |
| parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', | |
| help='number of data loading workers (default: 2)') | |
| parser.add_argument('-b', '--batch-size', default=256, type=int, | |
| metavar='N', help='mini-batch size (default: 256)') | |
| parser.add_argument('--img-size', default=None, type=int, | |
| metavar='N', help='Input image dimension, uses model default if empty') | |
| parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', | |
| help='Override mean pixel value of dataset') | |
| parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', | |
| help='Override std deviation of of dataset') | |
| parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', | |
| help='Override default crop pct of 0.875') | |
| parser.add_argument('--interpolation', default='', type=str, metavar='NAME', | |
| help='Image resize interpolation type (overrides model)') | |
| parser.add_argument('--num-classes', type=int, default=1000, | |
| help='Number classes in dataset') | |
| parser.add_argument('--print-freq', '-p', default=10, type=int, | |
| metavar='N', help='print frequency (default: 10)') | |
| parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', | |
| help='path to latest checkpoint (default: none)') | |
| parser.add_argument('--pretrained', dest='pretrained', action='store_true', | |
| help='use pre-trained model') | |
| parser.add_argument('--torchscript', dest='torchscript', action='store_true', | |
| help='convert model torchscript for inference') | |
| parser.add_argument('--num-gpu', type=int, default=1, | |
| help='Number of GPUS to use') | |
| parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true', | |
| help='use tensorflow mnasnet preporcessing') | |
| parser.add_argument('--no-cuda', dest='no_cuda', action='store_true', | |
| help='') | |
| parser.add_argument('--channels-last', action='store_true', default=False, | |
| help='Use channels_last memory layout') | |
| parser.add_argument('--amp', action='store_true', default=False, | |
| help='Use native Torch AMP mixed precision.') | |
| def main(): | |
| args = parser.parse_args() | |
| if not args.checkpoint and not args.pretrained: | |
| args.pretrained = True | |
| amp_autocast = suppress # do nothing | |
| if args.amp: | |
| if not has_native_amp: | |
| print("Native Torch AMP is not available (requires torch >= 1.6), using FP32.") | |
| else: | |
| amp_autocast = torch.cuda.amp.autocast | |
| # create model | |
| model = geffnet.create_model( | |
| args.model, | |
| num_classes=args.num_classes, | |
| in_chans=3, | |
| pretrained=args.pretrained, | |
| checkpoint_path=args.checkpoint, | |
| scriptable=args.torchscript) | |
| if args.channels_last: | |
| model = model.to(memory_format=torch.channels_last) | |
| if args.torchscript: | |
| torch.jit.optimized_execution(True) | |
| model = torch.jit.script(model) | |
| print('Model %s created, param count: %d' % | |
| (args.model, sum([m.numel() for m in model.parameters()]))) | |
| data_config = resolve_data_config(model, args) | |
| criterion = nn.CrossEntropyLoss() | |
| if not args.no_cuda: | |
| if args.num_gpu > 1: | |
| model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() | |
| else: | |
| model = model.cuda() | |
| criterion = criterion.cuda() | |
| loader = create_loader( | |
| Dataset(args.data, load_bytes=args.tf_preprocessing), | |
| input_size=data_config['input_size'], | |
| batch_size=args.batch_size, | |
| use_prefetcher=not args.no_cuda, | |
| interpolation=data_config['interpolation'], | |
| mean=data_config['mean'], | |
| std=data_config['std'], | |
| num_workers=args.workers, | |
| crop_pct=data_config['crop_pct'], | |
| tensorflow_preprocessing=args.tf_preprocessing) | |
| batch_time = AverageMeter() | |
| losses = AverageMeter() | |
| top1 = AverageMeter() | |
| top5 = AverageMeter() | |
| model.eval() | |
| end = time.time() | |
| with torch.no_grad(): | |
| for i, (input, target) in enumerate(loader): | |
| if not args.no_cuda: | |
| target = target.cuda() | |
| input = input.cuda() | |
| if args.channels_last: | |
| input = input.contiguous(memory_format=torch.channels_last) | |
| # compute output | |
| with amp_autocast(): | |
| output = model(input) | |
| loss = criterion(output, target) | |
| # measure accuracy and record loss | |
| prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | |
| losses.update(loss.item(), input.size(0)) | |
| top1.update(prec1.item(), input.size(0)) | |
| top5.update(prec5.item(), input.size(0)) | |
| # measure elapsed time | |
| batch_time.update(time.time() - end) | |
| end = time.time() | |
| if i % args.print_freq == 0: | |
| print('Test: [{0}/{1}]\t' | |
| 'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s) \t' | |
| 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | |
| 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | |
| 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | |
| i, len(loader), batch_time=batch_time, | |
| rate_avg=input.size(0) / batch_time.avg, | |
| loss=losses, top1=top1, top5=top5)) | |
| print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format( | |
| top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg)) | |
| if __name__ == '__main__': | |
| main() | |