FooocusEnhanced / custom_manopth /smpl_handpca_wrapper_HAND_only.py
JasonSmithSO's picture
Upload 777 files
0034848 verified
raw
history blame
5.26 kB
'''
Copyright 2017 Javier Romero, Dimitrios Tzionas, Michael J Black and the Max Planck Gesellschaft. All rights reserved.
This software is provided for research purposes only.
By using this software you agree to the terms of the MANO/SMPL+H Model license here http://mano.is.tue.mpg.de/license
More information about MANO/SMPL+H is available at http://mano.is.tue.mpg.de.
For comments or questions, please email us at: [email protected]
About this file:
================
This file defines a wrapper for the loading functions of the MANO model.
Modules included:
- load_model:
loads the MANO model from a given file location (i.e. a .pkl file location),
or a dictionary object.
'''
def col(A):
return A.reshape((-1, 1))
def MatVecMult(mtx, vec):
result = mtx.dot(col(vec.ravel())).ravel()
if len(vec.shape) > 1 and vec.shape[1] > 1:
result = result.reshape((-1, vec.shape[1]))
return result
def ready_arguments(fname_or_dict, posekey4vposed='pose'):
import numpy as np
import pickle
from custom_manopth.posemapper import posemap
if not isinstance(fname_or_dict, dict):
dd = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
# dd = pickle.load(open(fname_or_dict, 'rb'))
else:
dd = fname_or_dict
want_shapemodel = 'shapedirs' in dd
nposeparms = dd['kintree_table'].shape[1] * 3
if 'trans' not in dd:
dd['trans'] = np.zeros(3)
if 'pose' not in dd:
dd['pose'] = np.zeros(nposeparms)
if 'shapedirs' in dd and 'betas' not in dd:
dd['betas'] = np.zeros(dd['shapedirs'].shape[-1])
for s in [
'v_template', 'weights', 'posedirs', 'pose', 'trans', 'shapedirs',
'betas', 'J'
]:
if (s in dd) and not hasattr(dd[s], 'dterms'):
dd[s] = np.array(dd[s])
assert (posekey4vposed in dd)
if want_shapemodel:
dd['v_shaped'] = dd['shapedirs'].dot(dd['betas']) + dd['v_template']
v_shaped = dd['v_shaped']
J_tmpx = MatVecMult(dd['J_regressor'], v_shaped[:, 0])
J_tmpy = MatVecMult(dd['J_regressor'], v_shaped[:, 1])
J_tmpz = MatVecMult(dd['J_regressor'], v_shaped[:, 2])
dd['J'] = np.vstack((J_tmpx, J_tmpy, J_tmpz)).T
pose_map_res = posemap(dd['bs_type'])(dd[posekey4vposed])
dd['v_posed'] = v_shaped + dd['posedirs'].dot(pose_map_res)
else:
pose_map_res = posemap(dd['bs_type'])(dd[posekey4vposed])
dd_add = dd['posedirs'].dot(pose_map_res)
dd['v_posed'] = dd['v_template'] + dd_add
return dd
def load_model(fname_or_dict, ncomps=6, flat_hand_mean=False, v_template=None):
''' This model loads the fully articulable HAND SMPL model,
and replaces the pose DOFS by ncomps from PCA'''
from custom_manopth.verts import verts_core
import numpy as np
import pickle
import scipy.sparse as sp
np.random.seed(1)
if not isinstance(fname_or_dict, dict):
smpl_data = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
# smpl_data = pickle.load(open(fname_or_dict, 'rb'))
else:
smpl_data = fname_or_dict
rot = 3 # for global orientation!!!
hands_components = smpl_data['hands_components']
hands_mean = np.zeros(hands_components.shape[
1]) if flat_hand_mean else smpl_data['hands_mean']
hands_coeffs = smpl_data['hands_coeffs'][:, :ncomps]
selected_components = np.vstack((hands_components[:ncomps]))
hands_mean = hands_mean.copy()
pose_coeffs = np.zeros(rot + selected_components.shape[0])
full_hand_pose = pose_coeffs[rot:(rot + ncomps)].dot(selected_components)
smpl_data['fullpose'] = np.concatenate((pose_coeffs[:rot],
hands_mean + full_hand_pose))
smpl_data['pose'] = pose_coeffs
Jreg = smpl_data['J_regressor']
if not sp.issparse(Jreg):
smpl_data['J_regressor'] = (sp.csc_matrix(
(Jreg.data, (Jreg.row, Jreg.col)), shape=Jreg.shape))
# slightly modify ready_arguments to make sure that it uses the fullpose
# (which will NOT be pose) for the computation of posedirs
dd = ready_arguments(smpl_data, posekey4vposed='fullpose')
# create the smpl formula with the fullpose,
# but expose the PCA coefficients as smpl.pose for compatibility
args = {
'pose': dd['fullpose'],
'v': dd['v_posed'],
'J': dd['J'],
'weights': dd['weights'],
'kintree_table': dd['kintree_table'],
'xp': np,
'want_Jtr': True,
'bs_style': dd['bs_style'],
}
result_previous, meta = verts_core(**args)
result = result_previous + dd['trans'].reshape((1, 3))
result.no_translation = result_previous
if meta is not None:
for field in ['Jtr', 'A', 'A_global', 'A_weighted']:
if (hasattr(meta, field)):
setattr(result, field, getattr(meta, field))
setattr(result, 'Jtr', meta)
if hasattr(result, 'Jtr'):
result.J_transformed = result.Jtr + dd['trans'].reshape((1, 3))
for k, v in dd.items():
setattr(result, k, v)
if v_template is not None:
result.v_template[:] = v_template
return result
if __name__ == '__main__':
load_model()