JasonSmithSO's picture
Upload 777 files
0034848 verified
raw
history blame
7.4 kB
"""
This file contains the MANO defination and mesh sampling operations for MANO mesh
Adapted from opensource projects
MANOPTH (https://github.com/hassony2/manopth)
Pose2Mesh (https://github.com/hongsukchoi/Pose2Mesh_RELEASE)
GraphCMR (https://github.com/nkolot/GraphCMR/)
"""
from __future__ import division
import numpy as np
import torch
import torch.nn as nn
import os.path as osp
import json
import code
from custom_manopth.manolayer import ManoLayer
import scipy.sparse
import custom_mesh_graphormer.modeling.data.config as cfg
from pathlib import Path
from comfy.model_management import get_torch_device
from wrapper_for_mps import sparse_to_dense
device = get_torch_device()
class MANO(nn.Module):
def __init__(self):
super(MANO, self).__init__()
self.mano_dir = str(Path(__file__).parent / "data")
self.layer = self.get_layer()
self.vertex_num = 778
self.face = self.layer.th_faces.numpy()
self.joint_regressor = self.layer.th_J_regressor.numpy()
self.joint_num = 21
self.joints_name = ('Wrist', 'Thumb_1', 'Thumb_2', 'Thumb_3', 'Thumb_4', 'Index_1', 'Index_2', 'Index_3', 'Index_4', 'Middle_1', 'Middle_2', 'Middle_3', 'Middle_4', 'Ring_1', 'Ring_2', 'Ring_3', 'Ring_4', 'Pinky_1', 'Pinky_2', 'Pinky_3', 'Pinky_4')
self.skeleton = ( (0,1), (0,5), (0,9), (0,13), (0,17), (1,2), (2,3), (3,4), (5,6), (6,7), (7,8), (9,10), (10,11), (11,12), (13,14), (14,15), (15,16), (17,18), (18,19), (19,20) )
self.root_joint_idx = self.joints_name.index('Wrist')
# add fingertips to joint_regressor
self.fingertip_vertex_idx = [745, 317, 444, 556, 673] # mesh vertex idx (right hand)
thumbtip_onehot = np.array([1 if i == 745 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
indextip_onehot = np.array([1 if i == 317 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
middletip_onehot = np.array([1 if i == 445 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
ringtip_onehot = np.array([1 if i == 556 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
pinkytip_onehot = np.array([1 if i == 673 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
self.joint_regressor = np.concatenate((self.joint_regressor, thumbtip_onehot, indextip_onehot, middletip_onehot, ringtip_onehot, pinkytip_onehot))
self.joint_regressor = self.joint_regressor[[0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20],:]
joint_regressor_torch = torch.from_numpy(self.joint_regressor).float()
self.register_buffer('joint_regressor_torch', joint_regressor_torch)
def get_layer(self):
return ManoLayer(mano_root=osp.join(self.mano_dir), flat_hand_mean=False, use_pca=False) # load right hand MANO model
def get_3d_joints(self, vertices):
"""
This method is used to get the joint locations from the SMPL mesh
Input:
vertices: size = (B, 778, 3)
Output:
3D joints: size = (B, 21, 3)
"""
joints = torch.einsum('bik,ji->bjk', [vertices, self.joint_regressor_torch])
return joints
class SparseMM(torch.autograd.Function):
"""Redefine sparse @ dense matrix multiplication to enable backpropagation.
The builtin matrix multiplication operation does not support backpropagation in some cases.
"""
@staticmethod
def forward(ctx, sparse, dense):
ctx.req_grad = dense.requires_grad
ctx.save_for_backward(sparse)
return torch.matmul(sparse, dense)
@staticmethod
def backward(ctx, grad_output):
grad_input = None
sparse, = ctx.saved_tensors
if ctx.req_grad:
grad_input = torch.matmul(sparse.t(), grad_output)
return None, grad_input
def spmm(sparse, dense):
sparse = sparse.to(device)
dense = dense.to(device)
return SparseMM.apply(sparse, dense)
def scipy_to_pytorch(A, U, D):
"""Convert scipy sparse matrices to pytorch sparse matrix."""
ptU = []
ptD = []
for i in range(len(U)):
u = scipy.sparse.coo_matrix(U[i])
i = torch.LongTensor(np.array([u.row, u.col]))
v = torch.FloatTensor(u.data)
ptU.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, u.shape)))
for i in range(len(D)):
d = scipy.sparse.coo_matrix(D[i])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, d.shape)))
return ptU, ptD
def adjmat_sparse(adjmat, nsize=1):
"""Create row-normalized sparse graph adjacency matrix."""
adjmat = scipy.sparse.csr_matrix(adjmat)
if nsize > 1:
orig_adjmat = adjmat.copy()
for _ in range(1, nsize):
adjmat = adjmat * orig_adjmat
adjmat.data = np.ones_like(adjmat.data)
for i in range(adjmat.shape[0]):
adjmat[i,i] = 1
num_neighbors = np.array(1 / adjmat.sum(axis=-1))
adjmat = adjmat.multiply(num_neighbors)
adjmat = scipy.sparse.coo_matrix(adjmat)
row = adjmat.row
col = adjmat.col
data = adjmat.data
i = torch.LongTensor(np.array([row, col]))
v = torch.from_numpy(data).float()
adjmat = sparse_to_dense(torch.sparse_coo_tensor(i, v, adjmat.shape))
return adjmat
def get_graph_params(filename, nsize=1):
"""Load and process graph adjacency matrix and upsampling/downsampling matrices."""
data = np.load(filename, encoding='latin1', allow_pickle=True)
A = data['A']
U = data['U']
D = data['D']
U, D = scipy_to_pytorch(A, U, D)
A = [adjmat_sparse(a, nsize=nsize) for a in A]
return A, U, D
class Mesh(object):
"""Mesh object that is used for handling certain graph operations."""
def __init__(self, filename=cfg.MANO_sampling_matrix,
num_downsampling=1, nsize=1, device=torch.device('cuda')):
self._A, self._U, self._D = get_graph_params(filename=filename, nsize=nsize)
# self._A = [a.to(device) for a in self._A]
self._U = [u.to(device) for u in self._U]
self._D = [d.to(device) for d in self._D]
self.num_downsampling = num_downsampling
def downsample(self, x, n1=0, n2=None):
"""Downsample mesh."""
if n2 is None:
n2 = self.num_downsampling
if x.ndimension() < 3:
for i in range(n1, n2):
x = spmm(self._D[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in range(n1, n2):
y = spmm(self._D[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x
def upsample(self, x, n1=1, n2=0):
"""Upsample mesh."""
if x.ndimension() < 3:
for i in reversed(range(n2, n1)):
x = spmm(self._U[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in reversed(range(n2, n1)):
y = spmm(self._U[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x