JasonSmithSO's picture
Upload 777 files
0034848 verified
raw
history blame
35 kB
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
Training and evaluation codes for
3D hand mesh reconstruction from an image
"""
from __future__ import absolute_import, division, print_function
import argparse
import os
import os.path as op
import code
import json
import time
import datetime
import torch
import torchvision.models as models
from torchvision.utils import make_grid
import gc
import numpy as np
import cv2
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Hand_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._mano import MANO, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
import custom_mesh_graphormer.modeling.data.config as cfg
from custom_mesh_graphormer.datasets.build import make_hand_data_loader
from custom_mesh_graphormer.utils.logger import setup_logger
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed
from custom_mesh_graphormer.utils.metric_logger import AverageMeter
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test, visualize_reconstruction_no_text
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection
from comfy.model_management import get_torch_device
device = get_torch_device()
from azureml.core.run import Run
aml_run = Run.get_context()
def save_checkpoint(model, args, epoch, iteration, num_trial=10):
checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format(
epoch, iteration))
if not is_main_process():
return checkpoint_dir
mkdir(checkpoint_dir)
model_to_save = model.module if hasattr(model, 'module') else model
for i in range(num_trial):
try:
torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin'))
torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin'))
torch.save(args, op.join(checkpoint_dir, 'training_args.bin'))
logger.info("Save checkpoint to {}".format(checkpoint_dir))
break
except:
pass
else:
logger.info("Failed to save checkpoint after {} trails.".format(num_trial))
return checkpoint_dir
def adjust_learning_rate(optimizer, epoch, args):
"""
Sets the learning rate to the initial LR decayed by x every y epochs
x = 0.1, y = args.num_train_epochs/2.0 = 100
"""
lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0) ))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d):
"""
Compute 2D reprojection loss if 2D keypoint annotations are available.
The confidence is binary and indicates whether the keypoints exist or not.
"""
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean()
return loss
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d):
"""
Compute 3D keypoint loss if 3D keypoint annotations are available.
"""
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone()
gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1]
conf = conf[has_pose_3d == 1]
pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1]
if len(gt_keypoints_3d) > 0:
gt_root = gt_keypoints_3d[:, 0,:]
gt_keypoints_3d = gt_keypoints_3d - gt_root[:, None, :]
pred_root = pred_keypoints_3d[:, 0,:]
pred_keypoints_3d = pred_keypoints_3d - pred_root[:, None, :]
return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean()
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl):
"""
Compute per-vertex loss if vertex annotations are available.
"""
pred_vertices_with_shape = pred_vertices[has_smpl == 1]
gt_vertices_with_shape = gt_vertices[has_smpl == 1]
if len(gt_vertices_with_shape) > 0:
return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape)
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def run(args, train_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler):
max_iter = len(train_dataloader)
iters_per_epoch = max_iter // args.num_train_epochs
optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()),
lr=args.lr,
betas=(0.9, 0.999),
weight_decay=0)
# define loss function (criterion) and optimizer
criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
start_training_time = time.time()
end = time.time()
Graphormer_model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
log_losses = AverageMeter()
log_loss_2djoints = AverageMeter()
log_loss_3djoints = AverageMeter()
log_loss_vertices = AverageMeter()
for iteration, (img_keys, images, annotations) in enumerate(train_dataloader):
Graphormer_model.train()
iteration += 1
epoch = iteration // iters_per_epoch
batch_size = images.size(0)
adjust_learning_rate(optimizer, epoch, args)
data_time.update(time.time() - end)
images = images.to(device)
gt_2d_joints = annotations['joints_2d'].to(device)
gt_pose = annotations['pose'].to(device)
gt_betas = annotations['betas'].to(device)
has_mesh = annotations['has_smpl'].to(device)
has_3d_joints = has_mesh
has_2d_joints = has_mesh
mjm_mask = annotations['mjm_mask'].to(device)
mvm_mask = annotations['mvm_mask'].to(device)
# generate mesh
gt_vertices, gt_3d_joints = mano_model.layer(gt_pose, gt_betas)
gt_vertices = gt_vertices/1000.0
gt_3d_joints = gt_3d_joints/1000.0
gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
# normalize gt based on hand's wrist
gt_3d_root = gt_3d_joints[:,cfg.J_NAME.index('Wrist'),:]
gt_vertices = gt_vertices - gt_3d_root[:, None, :]
gt_vertices_sub = gt_vertices_sub - gt_3d_root[:, None, :]
gt_3d_joints = gt_3d_joints - gt_3d_root[:, None, :]
gt_3d_joints_with_tag = torch.ones((batch_size,gt_3d_joints.shape[1],4)).to(device)
gt_3d_joints_with_tag[:,:,:3] = gt_3d_joints
# prepare masks for mask vertex/joint modeling
mjm_mask_ = mjm_mask.expand(-1,-1,2051)
mvm_mask_ = mvm_mask.expand(-1,-1,2051)
meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler, meta_masks=meta_masks, is_train=True)
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of smpl mesh
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
pred_2d_joints = orthographic_projection(pred_3d_joints.contiguous(), pred_camera.contiguous())
# compute 3d joint loss (where the joints are directly output from transformer)
loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints_with_tag, has_3d_joints)
# compute 3d vertex loss
loss_vertices = ( args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_mesh) + \
args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_mesh) )
# compute 3d joint loss (where the joints are regressed from full mesh)
loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_mesh, gt_3d_joints_with_tag, has_3d_joints)
# compute 2d joint loss
loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints) + \
keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_mesh, gt_2d_joints, has_2d_joints)
loss_3d_joints = loss_3d_joints + loss_reg_3d_joints
# we empirically use hyperparameters to balance difference losses
loss = args.joints_loss_weight*loss_3d_joints + \
args.vertices_loss_weight*loss_vertices + args.vertices_loss_weight*loss_2d_joints
# update logs
log_loss_2djoints.update(loss_2d_joints.item(), batch_size)
log_loss_3djoints.update(loss_3d_joints.item(), batch_size)
log_loss_vertices.update(loss_vertices.item(), batch_size)
log_losses.update(loss.item(), batch_size)
# back prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if iteration % args.logging_steps == 0 or iteration == max_iter:
eta_seconds = batch_time.avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
' '.join(
['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',]
).format(eta=eta_string, ep=epoch, iter=iteration,
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0)
+ ' loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format(
log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg,
optimizer.param_groups[0]['lr'])
)
aml_run.log(name='Loss', value=float(log_losses.avg))
aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg))
aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg))
aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg))
visual_imgs = visualize_mesh( renderer,
annotations['ori_img'].detach(),
annotations['joints_2d'].detach(),
pred_vertices.detach(),
pred_camera.detach(),
pred_2d_joints_from_mesh.detach())
visual_imgs = visual_imgs.transpose(0,1)
visual_imgs = visual_imgs.transpose(1,2)
visual_imgs = np.asarray(visual_imgs)
if is_main_process()==True:
stamp = str(epoch) + '_' + str(iteration)
temp_fname = args.output_dir + 'visual_' + stamp + '.jpg'
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
aml_run.log_image(name='visual results', path=temp_fname)
if iteration % iters_per_epoch == 0:
if epoch%10==0:
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info('Total training time: {} ({:.4f} s / iter)'.format(
total_time_str, total_training_time / max_iter)
)
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
def run_eval_and_save(args, split, val_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler):
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
Graphormer_model.eval()
if args.aml_eval==True:
run_aml_inference_hand_mesh(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
0,
mano_model, mesh_sampler,
renderer, split)
else:
run_inference_hand_mesh(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
0,
mano_model, mesh_sampler,
renderer, split)
checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0)
return
def run_aml_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split):
# switch to evaluate mode
Graphormer_model.eval()
fname_output_save = []
mesh_output_save = []
joint_output_save = []
world_size = get_world_size()
with torch.no_grad():
for i, (img_keys, images, annotations) in enumerate(val_loader):
batch_size = images.size(0)
# compute output
images = images.to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
for j in range(batch_size):
fname_output_save.append(img_keys[j])
pred_vertices_list = pred_vertices[j].tolist()
mesh_output_save.append(pred_vertices_list)
pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist()
joint_output_save.append(pred_3d_joints_from_mesh_list)
if world_size > 1:
torch.distributed.barrier()
print('save results to pred.json')
output_json_file = 'pred.json'
print('save results to ', output_json_file)
with open(output_json_file, 'w') as f:
json.dump([joint_output_save, mesh_output_save], f)
azure_ckpt_name = '200' # args.resume_checkpoint.split('/')[-2].split('-')[1]
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
output_zip_file = args.output_dir + 'ckpt' + azure_ckpt_name + '-' + inference_setting +'-pred.zip'
resolved_submit_cmd = 'zip ' + output_zip_file + ' ' + output_json_file
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
resolved_submit_cmd = 'rm %s'%(output_json_file)
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
if world_size > 1:
torch.distributed.barrier()
return
def run_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split):
# switch to evaluate mode
Graphormer_model.eval()
fname_output_save = []
mesh_output_save = []
joint_output_save = []
with torch.no_grad():
for i, (img_keys, images, annotations) in enumerate(val_loader):
batch_size = images.size(0)
# compute output
images = images.to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
pred_3d_pelvis = pred_3d_joints_from_mesh[:,cfg.J_NAME.index('Wrist'),:]
pred_3d_joints_from_mesh = pred_3d_joints_from_mesh - pred_3d_pelvis[:, None, :]
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :]
for j in range(batch_size):
fname_output_save.append(img_keys[j])
pred_vertices_list = pred_vertices[j].tolist()
mesh_output_save.append(pred_vertices_list)
pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist()
joint_output_save.append(pred_3d_joints_from_mesh_list)
if i%20==0:
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of mesh
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
visual_imgs = visualize_mesh( renderer,
annotations['ori_img'].detach(),
annotations['joints_2d'].detach(),
pred_vertices.detach(),
pred_camera.detach(),
pred_2d_joints_from_mesh.detach())
visual_imgs = visual_imgs.transpose(0,1)
visual_imgs = visual_imgs.transpose(1,2)
visual_imgs = np.asarray(visual_imgs)
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
temp_fname = args.output_dir + args.resume_checkpoint[0:-9] + 'freihand_results_'+inference_setting+'_batch'+str(i)+'.jpg'
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
print('save results to pred.json')
with open('pred.json', 'w') as f:
json.dump([joint_output_save, mesh_output_save], f)
run_exp_name = args.resume_checkpoint.split('/')[-3]
run_ckpt_name = args.resume_checkpoint.split('/')[-2].split('-')[1]
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
resolved_submit_cmd = 'zip ' + args.output_dir + run_exp_name + '-ckpt'+ run_ckpt_name + '-' + inference_setting +'-pred.zip ' + 'pred.json'
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
resolved_submit_cmd = 'rm pred.json'
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
return
def visualize_mesh( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(21))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def visualize_mesh_test( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d,
PAmPJPE):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(21))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
score = PAmPJPE[i]
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def visualize_mesh_no_text( renderer,
images,
pred_vertices,
pred_camera):
"""Tensorboard logging."""
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 1)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
# Visualize reconstruction only
rend_img = visualize_reconstruction_no_text(img, 224, vertices, cam, renderer, color='hand')
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def parse_args():
parser = argparse.ArgumentParser()
#########################################################
# Data related arguments
#########################################################
parser.add_argument("--data_dir", default='datasets', type=str, required=False,
help="Directory with all datasets, each in one subfolder")
parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False,
help="Yaml file with all data for training.")
parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False,
help="Yaml file with all data for validation.")
parser.add_argument("--num_workers", default=4, type=int,
help="Workers in dataloader.")
parser.add_argument("--img_scale_factor", default=1, type=int,
help="adjust image resolution.")
#########################################################
# Loading/saving checkpoints
#########################################################
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False,
help="Path to pre-trained transformer model or model type.")
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False,
help="Path to specific checkpoint for resume training.")
parser.add_argument("--output_dir", default='output/', type=str, required=False,
help="The output directory to save checkpoint and test results.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name.")
parser.add_argument('-a', '--arch', default='hrnet-w64',
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50')
#########################################################
# Training parameters
#########################################################
parser.add_argument("--per_gpu_train_batch_size", default=64, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=64, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float,
help="The initial lr.")
parser.add_argument("--num_train_epochs", default=200, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--vertices_loss_weight", default=1.0, type=float)
parser.add_argument("--joints_loss_weight", default=1.0, type=float)
parser.add_argument("--vloss_w_full", default=0.5, type=float)
parser.add_argument("--vloss_w_sub", default=0.5, type=float)
parser.add_argument("--drop_out", default=0.1, type=float,
help="Drop out ratio in BERT.")
#########################################################
# Model architectures
#########################################################
parser.add_argument("--num_hidden_layers", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--hidden_size", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--num_attention_heads", default=-1, type=int, required=False,
help="Update model config if given. Note that the division of "
"hidden_size / num_attention_heads should be in integer.")
parser.add_argument("--intermediate_size", default=-1, type=int, required=False,
help="Update model config if given.")
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--which_gcn", default='0,0,1', type=str,
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv")
parser.add_argument("--mesh_type", default='hand', type=str, help="body or hand")
#########################################################
# Others
#########################################################
parser.add_argument("--run_eval_only", default=False, action='store_true',)
parser.add_argument("--multiscale_inference", default=False, action='store_true',)
# if enable "multiscale_inference", dataloader will apply transformations to the test image based on
# the rotation "rot" and scale "sc" parameters below
parser.add_argument("--rot", default=0, type=float)
parser.add_argument("--sc", default=1.0, type=float)
parser.add_argument("--aml_eval", default=False, action='store_true',)
parser.add_argument('--logging_steps', type=int, default=100,
help="Log every X steps.")
parser.add_argument("--device", type=str, default='cuda',
help="cuda or cpu")
parser.add_argument('--seed', type=int, default=88,
help="random seed for initialization.")
parser.add_argument("--local_rank", type=int, default=0,
help="For distributed training.")
args = parser.parse_args()
return args
def main(args):
global logger
# Setup CUDA, GPU & distributed training
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
args.distributed = args.num_gpus > 1
args.device = torch.device(args.device)
if args.distributed:
print("Init distributed training on local rank {}".format(args.local_rank))
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend='nccl', init_method='env://'
)
synchronize()
mkdir(args.output_dir)
logger = setup_logger("Graphormer", args.output_dir, get_rank())
set_seed(args.seed, args.num_gpus)
logger.info("Using {} GPUs".format(args.num_gpus))
# Mesh and SMPL utils
mano_model = MANO().to(args.device)
mano_model.layer = mano_model.layer.to(device)
mesh_sampler = Mesh()
# Renderer for visualization
renderer = Renderer(faces=mano_model.face)
# Load pretrained model
trans_encoder = []
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
output_feat_dim = input_feat_dim[1:] + [3]
# which encoder block to have graph convs
which_blk_graph = [int(item) for item in args.which_gcn.split(',')]
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
# if only run eval, load checkpoint
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
_model = torch.load(args.resume_checkpoint)
else:
# init three transformer-encoder blocks in a loop
for i in range(len(output_feat_dim)):
config_class, model_class = BertConfig, Graphormer
config = config_class.from_pretrained(args.config_name if args.config_name \
else args.model_name_or_path)
config.output_attentions = False
config.hidden_dropout_prob = args.drop_out
config.img_feature_dim = input_feat_dim[i]
config.output_feature_dim = output_feat_dim[i]
args.hidden_size = hidden_feat_dim[i]
args.intermediate_size = int(args.hidden_size*2)
if which_blk_graph[i]==1:
config.graph_conv = True
logger.info("Add Graph Conv")
else:
config.graph_conv = False
config.mesh_type = args.mesh_type
# update model structure if specified in arguments
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
for idx, param in enumerate(update_params):
arg_param = getattr(args, param)
config_param = getattr(config, param)
if arg_param > 0 and arg_param != config_param:
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
setattr(config, param, arg_param)
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
model = model_class(config=config)
logger.info("Init model from scratch.")
trans_encoder.append(model)
# create backbone model
if args.arch=='hrnet':
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w40 model')
elif args.arch=='hrnet-w64':
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w64 model')
else:
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# remove the last fc layer
backbone = torch.nn.Sequential(*list(backbone.children())[:-1])
trans_encoder = torch.nn.Sequential(*trans_encoder)
total_params = sum(p.numel() for p in trans_encoder.parameters())
logger.info('Graphormer encoders total parameters: {}'.format(total_params))
backbone_total_params = sum(p.numel() for p in backbone.parameters())
logger.info('Backbone total parameters: {}'.format(backbone_total_params))
# build end-to-end Graphormer network (CNN backbone + multi-layer Graphormer encoder)
_model = Graphormer_Network(args, config, backbone, trans_encoder)
if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
# for fine-tuning or resume training or inference, load weights from checkpoint
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
# workaround approach to load sparse tensor in graph conv.
state_dict = torch.load(args.resume_checkpoint)
_model.load_state_dict(state_dict, strict=False)
del state_dict
gc.collect()
torch.cuda.empty_cache()
_model.to(args.device)
logger.info("Training parameters %s", args)
if args.run_eval_only==True:
val_dataloader = make_hand_data_loader(args, args.val_yaml,
args.distributed, is_train=False, scale_factor=args.img_scale_factor)
run_eval_and_save(args, 'freihand', val_dataloader, _model, mano_model, renderer, mesh_sampler)
else:
train_dataloader = make_hand_data_loader(args, args.train_yaml,
args.distributed, is_train=True, scale_factor=args.img_scale_factor)
run(args, train_dataloader, _model, mano_model, renderer, mesh_sampler)
if __name__ == "__main__":
args = parse_args()
main(args)