Spaces:
Configuration error
Configuration error
""" PoolFormer implementation | |
Paper: `PoolFormer: MetaFormer is Actually What You Need for Vision` - https://arxiv.org/abs/2111.11418 | |
Code adapted from official impl at https://github.com/sail-sg/poolformer, original copyright in comment below | |
Modifications and additions for timm by / Copyright 2022, Ross Wightman | |
""" | |
# Copyright 2021 Garena Online Private Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import copy | |
import torch | |
import torch.nn as nn | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg, checkpoint_seq | |
from .layers import DropPath, trunc_normal_, to_2tuple, ConvMlp, GroupNorm1 | |
from .registry import register_model | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .95, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = dict( | |
poolformer_s12=_cfg( | |
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s12.pth.tar', | |
crop_pct=0.9), | |
poolformer_s24=_cfg( | |
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s24.pth.tar', | |
crop_pct=0.9), | |
poolformer_s36=_cfg( | |
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s36.pth.tar', | |
crop_pct=0.9), | |
poolformer_m36=_cfg( | |
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m36.pth.tar', | |
crop_pct=0.95), | |
poolformer_m48=_cfg( | |
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m48.pth.tar', | |
crop_pct=0.95), | |
) | |
class PatchEmbed(nn.Module): | |
""" Patch Embedding that is implemented by a layer of conv. | |
Input: tensor in shape [B, C, H, W] | |
Output: tensor in shape [B, C, H/stride, W/stride] | |
""" | |
def __init__(self, in_chs=3, embed_dim=768, patch_size=16, stride=16, padding=0, norm_layer=None): | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
stride = to_2tuple(stride) | |
padding = to_2tuple(padding) | |
self.proj = nn.Conv2d(in_chs, embed_dim, kernel_size=patch_size, stride=stride, padding=padding) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
x = self.norm(x) | |
return x | |
class Pooling(nn.Module): | |
def __init__(self, pool_size=3): | |
super().__init__() | |
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) | |
def forward(self, x): | |
return self.pool(x) - x | |
class PoolFormerBlock(nn.Module): | |
""" | |
Args: | |
dim: embedding dim | |
pool_size: pooling size | |
mlp_ratio: mlp expansion ratio | |
act_layer: activation | |
norm_layer: normalization | |
drop: dropout rate | |
drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 | |
use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 | |
""" | |
def __init__( | |
self, dim, pool_size=3, mlp_ratio=4., | |
act_layer=nn.GELU, norm_layer=GroupNorm1, | |
drop=0., drop_path=0., layer_scale_init_value=1e-5): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.token_mixer = Pooling(pool_size=pool_size) | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = ConvMlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
if layer_scale_init_value: | |
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim)) | |
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim)) | |
else: | |
self.layer_scale_1 = None | |
self.layer_scale_2 = None | |
def forward(self, x): | |
if self.layer_scale_1 is not None: | |
x = x + self.drop_path1(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.token_mixer(self.norm1(x))) | |
x = x + self.drop_path2(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path1(self.token_mixer(self.norm1(x))) | |
x = x + self.drop_path2(self.mlp(self.norm2(x))) | |
return x | |
def basic_blocks( | |
dim, index, layers, | |
pool_size=3, mlp_ratio=4., | |
act_layer=nn.GELU, norm_layer=GroupNorm1, | |
drop_rate=.0, drop_path_rate=0., | |
layer_scale_init_value=1e-5, | |
): | |
""" generate PoolFormer blocks for a stage """ | |
blocks = [] | |
for block_idx in range(layers[index]): | |
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) | |
blocks.append(PoolFormerBlock( | |
dim, pool_size=pool_size, mlp_ratio=mlp_ratio, | |
act_layer=act_layer, norm_layer=norm_layer, | |
drop=drop_rate, drop_path=block_dpr, | |
layer_scale_init_value=layer_scale_init_value, | |
)) | |
blocks = nn.Sequential(*blocks) | |
return blocks | |
class PoolFormer(nn.Module): | |
""" PoolFormer | |
""" | |
def __init__( | |
self, | |
layers, | |
embed_dims=(64, 128, 320, 512), | |
mlp_ratios=(4, 4, 4, 4), | |
downsamples=(True, True, True, True), | |
pool_size=3, | |
in_chans=3, | |
num_classes=1000, | |
global_pool='avg', | |
norm_layer=GroupNorm1, | |
act_layer=nn.GELU, | |
in_patch_size=7, | |
in_stride=4, | |
in_pad=2, | |
down_patch_size=3, | |
down_stride=2, | |
down_pad=1, | |
drop_rate=0., drop_path_rate=0., | |
layer_scale_init_value=1e-5, | |
**kwargs): | |
super().__init__() | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = embed_dims[-1] | |
self.grad_checkpointing = False | |
self.patch_embed = PatchEmbed( | |
patch_size=in_patch_size, stride=in_stride, padding=in_pad, | |
in_chs=in_chans, embed_dim=embed_dims[0]) | |
# set the main block in network | |
network = [] | |
for i in range(len(layers)): | |
network.append(basic_blocks( | |
embed_dims[i], i, layers, | |
pool_size=pool_size, mlp_ratio=mlp_ratios[i], | |
act_layer=act_layer, norm_layer=norm_layer, | |
drop_rate=drop_rate, drop_path_rate=drop_path_rate, | |
layer_scale_init_value=layer_scale_init_value) | |
) | |
if i < len(layers) - 1 and (downsamples[i] or embed_dims[i] != embed_dims[i + 1]): | |
# downsampling between stages | |
network.append(PatchEmbed( | |
in_chs=embed_dims[i], embed_dim=embed_dims[i + 1], | |
patch_size=down_patch_size, stride=down_stride, padding=down_pad) | |
) | |
self.network = nn.Sequential(*network) | |
self.norm = norm_layer(self.num_features) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
self.apply(self._init_weights) | |
# init for classification | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^patch_embed', # stem and embed | |
blocks=[ | |
(r'^network\.(\d+).*\.proj', (99999,)), | |
(r'^network\.(\d+)', None) if coarse else (r'^network\.(\d+)\.(\d+)', None), | |
(r'^norm', (99999,)) | |
], | |
) | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
self.global_pool = global_pool | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = self.network(x) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool == 'avg': | |
x = x.mean([-2, -1]) | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_poolformer(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg(PoolFormer, variant, pretrained, **kwargs) | |
return model | |
def poolformer_s12(pretrained=False, **kwargs): | |
""" PoolFormer-S12 model, Params: 12M """ | |
model = _create_poolformer('poolformer_s12', pretrained=pretrained, layers=(2, 2, 6, 2), **kwargs) | |
return model | |
def poolformer_s24(pretrained=False, **kwargs): | |
""" PoolFormer-S24 model, Params: 21M """ | |
model = _create_poolformer('poolformer_s24', pretrained=pretrained, layers=(4, 4, 12, 4), **kwargs) | |
return model | |
def poolformer_s36(pretrained=False, **kwargs): | |
""" PoolFormer-S36 model, Params: 31M """ | |
model = _create_poolformer( | |
'poolformer_s36', pretrained=pretrained, layers=(6, 6, 18, 6), layer_scale_init_value=1e-6, **kwargs) | |
return model | |
def poolformer_m36(pretrained=False, **kwargs): | |
""" PoolFormer-M36 model, Params: 56M """ | |
layers = (6, 6, 18, 6) | |
embed_dims = (96, 192, 384, 768) | |
model = _create_poolformer( | |
'poolformer_m36', pretrained=pretrained, layers=layers, embed_dims=embed_dims, | |
layer_scale_init_value=1e-6, **kwargs) | |
return model | |
def poolformer_m48(pretrained=False, **kwargs): | |
""" PoolFormer-M48 model, Params: 73M """ | |
layers = (8, 8, 24, 8) | |
embed_dims = (96, 192, 384, 768) | |
model = _create_poolformer( | |
'poolformer_m48', pretrained=pretrained, layers=layers, embed_dims=embed_dims, | |
layer_scale_init_value=1e-6, **kwargs) | |
return model | |