Spaces:
Configuration error
Configuration error
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from functools import partial | |
from ..common import ( | |
checkpoint, | |
exists, | |
default, | |
) | |
from ..basics import zero_module | |
import comfy.ops | |
ops = comfy.ops.disable_weight_init | |
from comfy import model_management | |
from comfy.ldm.modules.attention import optimized_attention, optimized_attention_masked | |
if model_management.xformers_enabled(): | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
else: | |
XFORMERS_IS_AVAILBLE = False | |
class RelativePosition(nn.Module): | |
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """ | |
def __init__(self, num_units, max_relative_position): | |
super().__init__() | |
self.num_units = num_units | |
self.max_relative_position = max_relative_position | |
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units)) | |
nn.init.xavier_uniform_(self.embeddings_table) | |
def forward(self, length_q, length_k): | |
device = self.embeddings_table.device | |
range_vec_q = torch.arange(length_q, device=device) | |
range_vec_k = torch.arange(length_k, device=device) | |
distance_mat = range_vec_k[None, :] - range_vec_q[:, None] | |
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) | |
final_mat = distance_mat_clipped + self.max_relative_position | |
final_mat = final_mat.long() | |
embeddings = self.embeddings_table[final_mat] | |
return embeddings | |
# TODO Add native Comfy optimized attention. | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
query_dim, | |
context_dim=None, | |
heads=8, | |
dim_head=64, | |
dropout=0., | |
relative_position=False, | |
temporal_length=None, | |
video_length=None, | |
image_cross_attention=False, | |
image_cross_attention_scale=1.0, | |
image_cross_attention_scale_learnable=False, | |
text_context_len=77, | |
device=None, | |
dtype=None, | |
operations=ops | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype) | |
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype) | |
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype) | |
self.to_out = nn.Sequential( | |
operations.Linear(inner_dim, query_dim, device=device, dtype=dtype), | |
nn.Dropout(dropout) | |
) | |
self.relative_position = relative_position | |
if self.relative_position: | |
assert(temporal_length is not None) | |
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) | |
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) | |
else: | |
## only used for spatial attention, while NOT for temporal attention | |
if XFORMERS_IS_AVAILBLE and temporal_length is None: | |
self.forward = self.efficient_forward | |
else: | |
self.forward = self.comfy_efficient_forward | |
self.video_length = video_length | |
self.image_cross_attention = image_cross_attention | |
self.image_cross_attention_scale = image_cross_attention_scale | |
self.text_context_len = text_context_len | |
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable | |
if self.image_cross_attention: | |
self.to_k_ip = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype) | |
self.to_v_ip = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype) | |
if image_cross_attention_scale_learnable: | |
self.register_parameter('alpha', nn.Parameter(torch.tensor(0.)) ) | |
def comfy_efficient_forward(self, x, context=None, mask=None, *args, **kwargs): | |
spatial_self_attn = (context is None) | |
k_ip, v_ip, out_ip = None, None, None | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
if self.image_cross_attention and not spatial_self_attn: | |
context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
k_ip = self.to_k_ip(context_image) | |
v_ip = self.to_v_ip(context_image) | |
else: | |
if not spatial_self_attn: | |
context = context[:,:self.text_context_len,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
out = optimized_attention(q, k, v, h) | |
if exists(mask): | |
## feasible for causal attention mask only | |
out = optimized_attention_masked(q, k, v, h) | |
## for image cross-attention | |
if k_ip is not None: | |
q = rearrange(q, 'b n (h d) -> (b h) n d', h=h) | |
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip)) | |
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale | |
del k_ip | |
sim_ip = sim_ip.softmax(dim=-1) | |
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip) | |
out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h) | |
if out_ip is not None: | |
if self.image_cross_attention_scale_learnable: | |
out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1) | |
else: | |
out = out + self.image_cross_attention_scale * out_ip | |
return self.to_out(out) | |
def forward(self, x, context=None, mask=None): | |
spatial_self_attn = (context is None) | |
k_ip, v_ip, out_ip = None, None, None | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
if self.image_cross_attention and not spatial_self_attn: | |
context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
k_ip = self.to_k_ip(context_image) | |
v_ip = self.to_v_ip(context_image) | |
else: | |
# Assumed Spatial Attention (b c h w) | |
if not spatial_self_attn: | |
context = context[:,:self.text_context_len,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if self.relative_position: | |
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] | |
k2 = self.relative_position_k(len_q, len_k) | |
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check | |
sim += sim2 | |
del k | |
if exists(mask): | |
## feasible for causal attention mask only | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b i j -> (b h) i j', h=h) | |
sim.masked_fill_(~(mask>0.5), max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
out = torch.einsum('b i j, b j d -> b i d', sim, v) | |
if self.relative_position: | |
v2 = self.relative_position_v(len_q, len_v) | |
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check | |
out += out2 | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
## for image cross-attention | |
if k_ip is not None: | |
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip)) | |
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale | |
del k_ip | |
sim_ip = sim_ip.softmax(dim=-1) | |
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip) | |
out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h) | |
if out_ip is not None: | |
if self.image_cross_attention_scale_learnable: | |
out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1) | |
else: | |
out = out + self.image_cross_attention_scale * out_ip | |
return self.to_out(out) | |
def efficient_forward(self, x, context=None, mask=None): | |
spatial_self_attn = (context is None) | |
k_ip, v_ip, out_ip = None, None, None | |
q = self.to_q(x) | |
context = default(context, x) | |
if self.image_cross_attention and not spatial_self_attn: | |
context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
k_ip = self.to_k_ip(context_image) | |
v_ip = self.to_v_ip(context_image) | |
else: | |
if not spatial_self_attn: | |
context = context[:,:self.text_context_len,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# actually compute the attention, what we cannot get enough of | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) | |
## for image cross-attention | |
if k_ip is not None: | |
k_ip, v_ip = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(k_ip, v_ip), | |
) | |
out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None) | |
out_ip = ( | |
out_ip.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
if out_ip is not None: | |
if self.image_cross_attention_scale_learnable: | |
out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1) | |
else: | |
out = out + self.image_cross_attention_scale * out_ip | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0., | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
disable_self_attn=False, | |
attention_cls=None, | |
video_length=None, | |
inner_dim=None, | |
image_cross_attention=False, | |
image_cross_attention_scale=1.0, | |
image_cross_attention_scale_learnable=False, | |
switch_temporal_ca_to_sa=False, | |
text_context_len=77, | |
ff_in=None, | |
device=None, | |
dtype=None, | |
operations=ops | |
): | |
super().__init__() | |
attn_cls = CrossAttention if attention_cls is None else attention_cls | |
self.ff_in = ff_in or inner_dim is not None | |
if self.ff_in: | |
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device) | |
self.ff_in = FeedForward( | |
dim, | |
dim_out=inner_dim, | |
dropout=dropout, | |
glu=gated_ff, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
if inner_dim is None: | |
inner_dim = dim | |
self.is_res = inner_dim == dim | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=None, device=device, dtype=dtype if self.disable_self_attn else None) | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, device=device, dtype=dtype) | |
self.attn2 = attn_cls( | |
query_dim=dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
video_length=video_length, | |
image_cross_attention=image_cross_attention, | |
image_cross_attention_scale=image_cross_attention_scale, | |
image_cross_attention_scale_learnable=image_cross_attention_scale_learnable, | |
text_context_len=text_context_len, | |
device=device, | |
dtype=dtype | |
) | |
self.image_cross_attention = image_cross_attention | |
self.norm1 = operations.LayerNorm(dim, device=device, dtype=dtype) | |
self.norm2 = operations.LayerNorm(dim, device=device, dtype=dtype) | |
self.norm3 = operations.LayerNorm(dim, device=device, dtype=dtype) | |
self.n_heads = n_heads | |
self.d_head = d_head | |
self.checkpoint = checkpoint | |
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa | |
def forward(self, x, context=None, mask=None, **kwargs): | |
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments | |
input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments | |
if context is not None: | |
input_tuple = (x, context) | |
if mask is not None: | |
forward_mask = partial(self._forward, mask=mask) | |
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint) | |
return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint) | |
def _forward(self, x, context=None, mask=None, transformer_options={}): | |
extra_options = {} | |
block = transformer_options.get("block", None) | |
block_index = transformer_options.get("block_index", 0) | |
transformer_patches = {} | |
transformer_patches_replace = {} | |
for k in transformer_options: | |
if k == "patches": | |
transformer_patches = transformer_options[k] | |
elif k == "patches_replace": | |
transformer_patches_replace = transformer_options[k] | |
else: | |
extra_options[k] = transformer_options[k] | |
extra_options["n_heads"] = self.n_heads | |
extra_options["dim_head"] = self.d_head | |
if self.ff_in: | |
x_skip = x | |
x = self.ff_in(self.norm_in(x)) | |
if self.is_res: | |
x += x_skip | |
n = self.norm1(x) | |
if self.disable_self_attn: | |
context_attn1 = context | |
else: | |
context_attn1 = None | |
value_attn1 = None | |
if "attn1_patch" in transformer_patches: | |
patch = transformer_patches["attn1_patch"] | |
if context_attn1 is None: | |
context_attn1 = n | |
value_attn1 = context_attn1 | |
for p in patch: | |
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) | |
if block is not None: | |
transformer_block = (block[0], block[1], block_index) | |
else: | |
transformer_block = None | |
attn1_replace_patch = transformer_patches_replace.get("attn1", {}) | |
block_attn1 = transformer_block | |
if block_attn1 not in attn1_replace_patch: | |
block_attn1 = block | |
if block_attn1 in attn1_replace_patch: | |
if context_attn1 is None: | |
context_attn1 = n | |
value_attn1 = n | |
n = self.attn1.to_q(n) | |
context_attn1 = self.attn1.to_k(context_attn1) | |
value_attn1 = self.attn1.to_v(value_attn1) | |
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) | |
n = self.attn1.to_out(n) | |
else: | |
n = self.attn1(n, context=context_attn1, value=value_attn1) | |
if "attn1_output_patch" in transformer_patches: | |
patch = transformer_patches["attn1_output_patch"] | |
for p in patch: | |
n = p(n, extra_options) | |
x += n | |
if "middle_patch" in transformer_patches: | |
patch = transformer_patches["middle_patch"] | |
for p in patch: | |
x = p(x, extra_options) | |
if self.attn2 is not None: | |
n = self.norm2(x) | |
if self.switch_temporal_ca_to_sa: | |
context_attn2 = n | |
else: | |
context_attn2 = context | |
value_attn2 = None | |
if "attn2_patch" in transformer_patches: | |
patch = transformer_patches["attn2_patch"] | |
value_attn2 = context_attn2 | |
for p in patch: | |
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) | |
attn2_replace_patch = transformer_patches_replace.get("attn2", {}) | |
block_attn2 = transformer_block | |
if block_attn2 not in attn2_replace_patch: | |
block_attn2 = block | |
if block_attn2 in attn2_replace_patch: | |
if value_attn2 is None: | |
value_attn2 = context_attn2 | |
n = self.attn2.to_q(n) | |
context_attn2 = self.attn2.to_k(context_attn2) | |
value_attn2 = self.attn2.to_v(value_attn2) | |
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) | |
n = self.attn2.to_out(n) | |
else: | |
n = self.attn2(n, context=context_attn2, value=value_attn2) | |
if "attn2_output_patch" in transformer_patches: | |
patch = transformer_patches["attn2_output_patch"] | |
for p in patch: | |
n = p(n, extra_options) | |
x += n | |
if self.is_res: | |
x_skip = x | |
x = self.ff(self.norm3(x)) | |
if self.is_res: | |
x += x_skip | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data in spatial axis. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0., | |
context_dim=None, | |
use_checkpoint=True, | |
disable_self_attn=False, | |
use_linear=False, | |
video_length=None, | |
image_cross_attention=False, | |
image_cross_attention_scale_learnable=False, | |
device=None, | |
dtype=None, | |
operations=ops | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, device=device, dtype=dtype) | |
if not use_linear: | |
self.proj_in = opeations.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0, device=device, dtype=dtype) | |
else: | |
self.proj_in = operations.Linear(in_channels, inner_dim, device=device, dtype=dtype) | |
attention_cls = None | |
self.transformer_blocks = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim, | |
disable_self_attn=disable_self_attn, | |
checkpoint=use_checkpoint, | |
attention_cls=attention_cls, | |
video_length=video_length, | |
image_cross_attention=image_cross_attention, | |
image_cross_attention_scale_learnable=image_cross_attention_scale_learnable, | |
device=device, | |
dtype=dtype | |
) for d in range(depth) | |
]) | |
if not use_linear: | |
self.proj_out = zero_module(operations.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0, device=device, dtype=dtype)) | |
else: | |
self.proj_out = zero_module(operations.Linear(inner_dim, in_channels, device=device, dtype=dtype)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, transformer_options={}, **kwargs): | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
transformer_options['block_index'] = i | |
x = block(x, context=context, **kwargs) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
class TemporalTransformer(nn.Module): | |
""" | |
Transformer block for image-like data in temporal axis. | |
First, reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0., | |
context_dim=None, | |
use_checkpoint=True, | |
use_linear=False, | |
only_self_att=True, | |
causal_attention=False, | |
causal_block_size=1, | |
relative_position=False, | |
temporal_length=None, | |
device=None, | |
dtype=None, | |
operations=ops | |
): | |
super().__init__() | |
self.only_self_att = only_self_att | |
self.relative_position = relative_position | |
self.causal_attention = causal_attention | |
self.causal_block_size = causal_block_size | |
if only_self_att: | |
context_dim = None | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, device=device, dtype=dtype) | |
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0).to(device, dtype) | |
if not use_linear: | |
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0).to(device, dtype) | |
else: | |
self.proj_in = operations.Linear(in_channels, inner_dim, device=device, dtype=dtype) | |
if relative_position: | |
assert(temporal_length is not None) | |
attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length, device=device, dtype=dtype) | |
else: | |
attention_cls = partial(CrossAttention, temporal_length=temporal_length, device=device, dtype=dtype) | |
if self.causal_attention: | |
assert(temporal_length is not None) | |
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) | |
if self.only_self_att: | |
context_dim = None | |
self.transformer_blocks = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim, | |
attention_cls=attention_cls, | |
checkpoint=use_checkpoint, | |
device=device, | |
dtype=dtype | |
) for d in range(depth) | |
]) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0).to(device, dtype)) | |
else: | |
self.proj_out = zero_module(operations.Linear(inner_dim, in_channels, device=device, dtype=dtype)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
b, c, t, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous() | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'bhw c t -> bhw t c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
temp_mask = None | |
if self.causal_attention: | |
# slice the from mask map | |
temp_mask = self.mask[:,:t,:t].to(x.device) | |
if temp_mask is not None: | |
mask = temp_mask.to(x.device) | |
mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w) | |
else: | |
mask = None | |
if self.only_self_att: | |
## note: if no context is given, cross-attention defaults to self-attention | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, mask=mask) | |
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() | |
else: | |
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() | |
context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
for j in range(b): | |
context_j = repeat( | |
context[j], | |
't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous() | |
## note: causal mask will not applied in cross-attention case | |
x[j] = block(x[j], context=context_j) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous() | |
x = self.proj_out(x) | |
x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous() | |
return x + x_in | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out, device=None, dtype=None, operations=ops): | |
super().__init__() | |
self.proj = operations.Linear(dim_in, dim_out * 2, device=device, dtype=dtype) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., device=None, dtype=None, operations=ops): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
operations.Linear(dim, inner_dim, device=device, dtype=dtype), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
operations.Linear(inner_dim, dim_out, device=device, dtype=dtype) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32, device=None, dtype=None, operations=ops): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = operations.Conv2d(dim, hidden_dim * 3, 1, bias = False, device=device, dtype=dtype) | |
self.to_out = operations.Conv2d(hidden_dim, dim, 1, device=device, dtype=dtype) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) | |
k = k.softmax(dim=-1) | |
context = torch.einsum('bhdn,bhen->bhde', k, v) | |
out = torch.einsum('bhde,bhdn->bhen', context, q) | |
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) | |
return self.to_out(out) | |
class SpatialSelfAttention(nn.Module): | |
def __init__(self, in_channels, device=None, dtype=None, operations=ops): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = operations.GroupNorm( | |
num_groups=32, | |
num_channels=in_channels, | |
eps=1e-6, | |
affine=True, | |
device=device, | |
dtype=dtype | |
) | |
self.q = operations.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
device=device, | |
dtype=dtype | |
) | |
self.k = operations.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
device=device, | |
dtype=dtype | |
) | |
self.v = operations.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
device=device, | |
dtype=dtype | |
) | |
self.proj_out = operations.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
device=device, | |
dtype=dtype | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = rearrange(q, 'b c h w -> b (h w) c') | |
k = rearrange(k, 'b c h w -> b c (h w)') | |
w_ = torch.einsum('bij,bjk->bik', q, k) | |
w_ = w_ * (int(c)**(-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = rearrange(v, 'b c h w -> b c (h w)') | |
w_ = rearrange(w_, 'b i j -> b j i') | |
h_ = torch.einsum('bij,bjk->bik', v, w_) | |
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) | |
h_ = self.proj_out(h_) | |
return x+h_ | |