Spaces:
Configuration error
Configuration error
#credit to huchenlei for this module | |
#from https://github.com/huchenlei/ComfyUI-layerdiffuse | |
import torch | |
import comfy.model_management | |
import comfy.lora | |
import copy | |
from typing import Optional | |
from enum import Enum | |
from comfy.utils import load_torch_file | |
from comfy.conds import CONDRegular | |
from comfy_extras.nodes_compositing import JoinImageWithAlpha | |
from .model import ModelPatcher, TransparentVAEDecoder, calculate_weight_adjust_channel | |
from .attension_sharing import AttentionSharingPatcher | |
from ..config import LAYER_DIFFUSION, LAYER_DIFFUSION_DIR, LAYER_DIFFUSION_VAE | |
from ..libs.utils import to_lora_patch_dict, get_local_filepath, get_sd_version | |
load_layer_model_state_dict = load_torch_file | |
class LayerMethod(Enum): | |
FG_ONLY_ATTN = "Attention Injection" | |
FG_ONLY_CONV = "Conv Injection" | |
FG_TO_BLEND = "Foreground" | |
FG_BLEND_TO_BG = "Foreground to Background" | |
BG_TO_BLEND = "Background" | |
BG_BLEND_TO_FG = "Background to Foreground" | |
EVERYTHING = "Everything" | |
class LayerDiffuse: | |
def __init__(self) -> None: | |
self.vae_transparent_decoder = None | |
self.frames = 1 | |
def get_layer_diffusion_method(self, method, has_blend_latent): | |
method = LayerMethod(method) | |
if method == LayerMethod.BG_TO_BLEND and has_blend_latent: | |
method = LayerMethod.BG_BLEND_TO_FG | |
elif method == LayerMethod.FG_TO_BLEND and has_blend_latent: | |
method = LayerMethod.FG_BLEND_TO_BG | |
return method | |
def apply_layer_c_concat(self, cond, uncond, c_concat): | |
def write_c_concat(cond): | |
new_cond = [] | |
for t in cond: | |
n = [t[0], t[1].copy()] | |
if "model_conds" not in n[1]: | |
n[1]["model_conds"] = {} | |
n[1]["model_conds"]["c_concat"] = CONDRegular(c_concat) | |
new_cond.append(n) | |
return new_cond | |
return (write_c_concat(cond), write_c_concat(uncond)) | |
def apply_layer_diffusion(self, model: ModelPatcher, method, weight, samples, blend_samples, positive, negative, image=None, additional_cond=(None, None, None)): | |
control_img: Optional[torch.TensorType] = None | |
sd_version = get_sd_version(model) | |
model_url = LAYER_DIFFUSION[method.value][sd_version]["model_url"] | |
if image is not None: | |
image = image.movedim(-1, 1) | |
try: | |
if hasattr(comfy.lora, "calculate_weight"): | |
comfy.lora.calculate_weight = calculate_weight_adjust_channel(comfy.lora.calculate_weight) | |
else: | |
ModelPatcher.calculate_weight = calculate_weight_adjust_channel(ModelPatcher.calculate_weight) | |
except: | |
pass | |
if method in [LayerMethod.FG_ONLY_CONV, LayerMethod.FG_ONLY_ATTN] and sd_version == 'sd1': | |
self.frames = 1 | |
elif method in [LayerMethod.BG_TO_BLEND, LayerMethod.FG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG, LayerMethod.FG_BLEND_TO_BG] and sd_version == 'sd1': | |
self.frames = 2 | |
batch_size, _, height, width = samples['samples'].shape | |
if batch_size % 2 != 0: | |
raise Exception(f"The batch size should be a multiple of 2. 批次大小需为2的倍数") | |
control_img = image | |
elif method == LayerMethod.EVERYTHING and sd_version == 'sd1': | |
batch_size, _, height, width = samples['samples'].shape | |
self.frames = 3 | |
if batch_size % 3 != 0: | |
raise Exception(f"The batch size should be a multiple of 3. 批次大小需为3的倍数") | |
if model_url is None: | |
raise Exception(f"{method.value} is not supported for {sd_version} model") | |
model_path = get_local_filepath(model_url, LAYER_DIFFUSION_DIR) | |
layer_lora_state_dict = load_layer_model_state_dict(model_path) | |
work_model = model.clone() | |
if sd_version == 'sd1': | |
patcher = AttentionSharingPatcher( | |
work_model, self.frames, use_control=control_img is not None | |
) | |
patcher.load_state_dict(layer_lora_state_dict, strict=True) | |
if control_img is not None: | |
patcher.set_control(control_img) | |
else: | |
layer_lora_patch_dict = to_lora_patch_dict(layer_lora_state_dict) | |
work_model.add_patches(layer_lora_patch_dict, weight) | |
# cond_contact | |
if method in [LayerMethod.FG_ONLY_ATTN, LayerMethod.FG_ONLY_CONV]: | |
samp_model = work_model | |
elif sd_version == 'sdxl': | |
if method in [LayerMethod.BG_TO_BLEND, LayerMethod.FG_TO_BLEND]: | |
c_concat = model.model.latent_format.process_in(samples["samples"]) | |
else: | |
c_concat = model.model.latent_format.process_in(torch.cat([samples["samples"], blend_samples["samples"]], dim=1)) | |
samp_model, positive, negative = (work_model,) + self.apply_layer_c_concat(positive, negative, c_concat) | |
elif sd_version == 'sd1': | |
if method in [LayerMethod.BG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG]: | |
additional_cond = (additional_cond[0], None) | |
elif method in [LayerMethod.FG_TO_BLEND, LayerMethod.FG_BLEND_TO_BG]: | |
additional_cond = (additional_cond[1], None) | |
work_model.model_options.setdefault("transformer_options", {}) | |
work_model.model_options["transformer_options"]["cond_overwrite"] = [ | |
cond[0][0] if cond is not None else None | |
for cond in additional_cond | |
] | |
samp_model = work_model | |
return samp_model, positive, negative | |
def join_image_with_alpha(self, image, alpha): | |
out = image.movedim(-1, 1) | |
if out.shape[1] == 3: # RGB | |
out = torch.cat([out, torch.ones_like(out[:, :1, :, :])], dim=1) | |
for i in range(out.shape[0]): | |
out[i, 3, :, :] = alpha | |
return out.movedim(1, -1) | |
def image_to_alpha(self, image, latent): | |
pixel = image.movedim(-1, 1) # [B, H, W, C] => [B, C, H, W] | |
decoded = [] | |
sub_batch_size = 16 | |
for start_idx in range(0, latent.shape[0], sub_batch_size): | |
decoded.append( | |
self.vae_transparent_decoder.decode_pixel( | |
pixel[start_idx: start_idx + sub_batch_size], | |
latent[start_idx: start_idx + sub_batch_size], | |
) | |
) | |
pixel_with_alpha = torch.cat(decoded, dim=0) | |
# [B, C, H, W] => [B, H, W, C] | |
pixel_with_alpha = pixel_with_alpha.movedim(1, -1) | |
image = pixel_with_alpha[..., 1:] | |
alpha = pixel_with_alpha[..., 0] | |
alpha = 1.0 - alpha | |
new_images, = JoinImageWithAlpha().join_image_with_alpha(image, alpha) | |
return new_images, alpha | |
def make_3d_mask(self, mask): | |
if len(mask.shape) == 4: | |
return mask.squeeze(0) | |
elif len(mask.shape) == 2: | |
return mask.unsqueeze(0) | |
return mask | |
def masks_to_list(self, masks): | |
if masks is None: | |
empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
return ([empty_mask],) | |
res = [] | |
for mask in masks: | |
res.append(mask) | |
return [self.make_3d_mask(x) for x in res] | |
def layer_diffusion_decode(self, layer_diffusion_method, latent, blend_samples, samp_images, model): | |
alpha = [] | |
if layer_diffusion_method is not None: | |
sd_version = get_sd_version(model) | |
if sd_version not in ['sdxl', 'sd1']: | |
raise Exception(f"Only SDXL and SD1.5 model supported for Layer Diffusion") | |
method = self.get_layer_diffusion_method(layer_diffusion_method, blend_samples is not None) | |
sd15_allow = True if sd_version == 'sd1' and method in [LayerMethod.FG_ONLY_ATTN, LayerMethod.EVERYTHING, LayerMethod.BG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG] else False | |
sdxl_allow = True if sd_version == 'sdxl' and method in [LayerMethod.FG_ONLY_CONV, LayerMethod.FG_ONLY_ATTN, LayerMethod.BG_BLEND_TO_FG] else False | |
if sdxl_allow or sd15_allow: | |
if self.vae_transparent_decoder is None: | |
model_url = LAYER_DIFFUSION_VAE['decode'][sd_version]["model_url"] | |
if model_url is None: | |
raise Exception(f"{method.value} is not supported for {sd_version} model") | |
decoder_file = get_local_filepath(model_url, LAYER_DIFFUSION_DIR) | |
self.vae_transparent_decoder = TransparentVAEDecoder( | |
load_torch_file(decoder_file), | |
device=comfy.model_management.get_torch_device(), | |
dtype=(torch.float16 if comfy.model_management.should_use_fp16() else torch.float32), | |
) | |
if method in [LayerMethod.EVERYTHING, LayerMethod.BG_BLEND_TO_FG, LayerMethod.BG_TO_BLEND]: | |
new_images = [] | |
sliced_samples = copy.copy({"samples": latent}) | |
for index in range(len(samp_images)): | |
if index % self.frames == 0: | |
img = samp_images[index::self.frames] | |
alpha_images, _alpha = self.image_to_alpha(img, sliced_samples["samples"][index::self.frames]) | |
alpha.append(self.make_3d_mask(_alpha[0])) | |
new_images.append(alpha_images[0]) | |
else: | |
new_images.append(samp_images[index]) | |
else: | |
new_images, alpha = self.image_to_alpha(samp_images, latent) | |
else: | |
new_images = samp_images | |
else: | |
new_images = samp_images | |
return (new_images, samp_images, alpha) |