Spaces:
Configuration error
Configuration error
import torch, math | |
######################### DynThresh Core ######################### | |
class DynThresh: | |
Modes = ["Constant", "Linear Down", "Cosine Down", "Half Cosine Down", "Linear Up", "Cosine Up", "Half Cosine Up", "Power Up", "Power Down", "Linear Repeating", "Cosine Repeating", "Sawtooth"] | |
Startpoints = ["MEAN", "ZERO"] | |
Variabilities = ["AD", "STD"] | |
def __init__(self, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, experiment_mode, max_steps, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi): | |
self.mimic_scale = mimic_scale | |
self.threshold_percentile = threshold_percentile | |
self.mimic_mode = mimic_mode | |
self.cfg_mode = cfg_mode | |
self.max_steps = max_steps | |
self.cfg_scale_min = cfg_scale_min | |
self.mimic_scale_min = mimic_scale_min | |
self.experiment_mode = experiment_mode | |
self.sched_val = sched_val | |
self.sep_feat_channels = separate_feature_channels | |
self.scaling_startpoint = scaling_startpoint | |
self.variability_measure = variability_measure | |
self.interpolate_phi = interpolate_phi | |
def interpret_scale(self, scale, mode, min): | |
scale -= min | |
max = self.max_steps - 1 | |
frac = self.step / max | |
if mode == "Constant": | |
pass | |
elif mode == "Linear Down": | |
scale *= 1.0 - frac | |
elif mode == "Half Cosine Down": | |
scale *= math.cos(frac) | |
elif mode == "Cosine Down": | |
scale *= math.cos(frac * 1.5707) | |
elif mode == "Linear Up": | |
scale *= frac | |
elif mode == "Half Cosine Up": | |
scale *= 1.0 - math.cos(frac) | |
elif mode == "Cosine Up": | |
scale *= 1.0 - math.cos(frac * 1.5707) | |
elif mode == "Power Up": | |
scale *= math.pow(frac, self.sched_val) | |
elif mode == "Power Down": | |
scale *= 1.0 - math.pow(frac, self.sched_val) | |
elif mode == "Linear Repeating": | |
portion = (frac * self.sched_val) % 1.0 | |
scale *= (0.5 - portion) * 2 if portion < 0.5 else (portion - 0.5) * 2 | |
elif mode == "Cosine Repeating": | |
scale *= math.cos(frac * 6.28318 * self.sched_val) * 0.5 + 0.5 | |
elif mode == "Sawtooth": | |
scale *= (frac * self.sched_val) % 1.0 | |
scale += min | |
return scale | |
def dynthresh(self, cond, uncond, cfg_scale, weights): | |
mimic_scale = self.interpret_scale(self.mimic_scale, self.mimic_mode, self.mimic_scale_min) | |
cfg_scale = self.interpret_scale(cfg_scale, self.cfg_mode, self.cfg_scale_min) | |
# uncond shape is (batch, 4, height, width) | |
conds_per_batch = cond.shape[0] / uncond.shape[0] | |
assert conds_per_batch == int(conds_per_batch), "Expected # of conds per batch to be constant across batches" | |
cond_stacked = cond.reshape((-1, int(conds_per_batch)) + uncond.shape[1:]) | |
### Normal first part of the CFG Scale logic, basically | |
diff = cond_stacked - uncond.unsqueeze(1) | |
if weights is not None: | |
diff = diff * weights | |
relative = diff.sum(1) | |
### Get the normal result for both mimic and normal scale | |
mim_target = uncond + relative * mimic_scale | |
cfg_target = uncond + relative * cfg_scale | |
### If we weren't doing mimic scale, we'd just return cfg_target here | |
### Now recenter the values relative to their average rather than absolute, to allow scaling from average | |
mim_flattened = mim_target.flatten(2) | |
cfg_flattened = cfg_target.flatten(2) | |
mim_means = mim_flattened.mean(dim=2).unsqueeze(2) | |
cfg_means = cfg_flattened.mean(dim=2).unsqueeze(2) | |
mim_centered = mim_flattened - mim_means | |
cfg_centered = cfg_flattened - cfg_means | |
if self.sep_feat_channels: | |
if self.variability_measure == 'STD': | |
mim_scaleref = mim_centered.std(dim=2).unsqueeze(2) | |
cfg_scaleref = cfg_centered.std(dim=2).unsqueeze(2) | |
else: # 'AD' | |
mim_scaleref = mim_centered.abs().max(dim=2).values.unsqueeze(2) | |
cfg_scaleref = torch.quantile(cfg_centered.abs(), self.threshold_percentile, dim=2).unsqueeze(2) | |
else: | |
if self.variability_measure == 'STD': | |
mim_scaleref = mim_centered.std() | |
cfg_scaleref = cfg_centered.std() | |
else: # 'AD' | |
mim_scaleref = mim_centered.abs().max() | |
cfg_scaleref = torch.quantile(cfg_centered.abs(), self.threshold_percentile) | |
if self.scaling_startpoint == 'ZERO': | |
scaling_factor = mim_scaleref / cfg_scaleref | |
result = cfg_flattened * scaling_factor | |
else: # 'MEAN' | |
if self.variability_measure == 'STD': | |
cfg_renormalized = (cfg_centered / cfg_scaleref) * mim_scaleref | |
else: # 'AD' | |
### Get the maximum value of all datapoints (with an optional threshold percentile on the uncond) | |
max_scaleref = torch.maximum(mim_scaleref, cfg_scaleref) | |
### Clamp to the max | |
cfg_clamped = cfg_centered.clamp(-max_scaleref, max_scaleref) | |
### Now shrink from the max to normalize and grow to the mimic scale (instead of the CFG scale) | |
cfg_renormalized = (cfg_clamped / max_scaleref) * mim_scaleref | |
### Now add it back onto the averages to get into real scale again and return | |
result = cfg_renormalized + cfg_means | |
actual_res = result.unflatten(2, mim_target.shape[2:]) | |
if self.interpolate_phi != 1.0: | |
actual_res = actual_res * self.interpolate_phi + cfg_target * (1.0 - self.interpolate_phi) | |
if self.experiment_mode == 1: | |
num = actual_res.cpu().numpy() | |
for y in range(0, 64): | |
for x in range (0, 64): | |
if num[0][0][y][x] > 1.0: | |
num[0][1][y][x] *= 0.5 | |
if num[0][1][y][x] > 1.0: | |
num[0][1][y][x] *= 0.5 | |
if num[0][2][y][x] > 1.5: | |
num[0][2][y][x] *= 0.5 | |
actual_res = torch.from_numpy(num).to(device=uncond.device) | |
elif self.experiment_mode == 2: | |
num = actual_res.cpu().numpy() | |
for y in range(0, 64): | |
for x in range (0, 64): | |
over_scale = False | |
for z in range(0, 4): | |
if abs(num[0][z][y][x]) > 1.5: | |
over_scale = True | |
if over_scale: | |
for z in range(0, 4): | |
num[0][z][y][x] *= 0.7 | |
actual_res = torch.from_numpy(num).to(device=uncond.device) | |
elif self.experiment_mode == 3: | |
coefs = torch.tensor([ | |
# R G B W | |
[0.298, 0.207, 0.208, 0.0], # L1 | |
[0.187, 0.286, 0.173, 0.0], # L2 | |
[-0.158, 0.189, 0.264, 0.0], # L3 | |
[-0.184, -0.271, -0.473, 1.0], # L4 | |
], device=uncond.device) | |
res_rgb = torch.einsum("laxy,ab -> lbxy", actual_res, coefs) | |
max_r, max_g, max_b, max_w = res_rgb[0][0].max(), res_rgb[0][1].max(), res_rgb[0][2].max(), res_rgb[0][3].max() | |
max_rgb = max(max_r, max_g, max_b) | |
print(f"test max = r={max_r}, g={max_g}, b={max_b}, w={max_w}, rgb={max_rgb}") | |
if self.step / (self.max_steps - 1) > 0.2: | |
if max_rgb < 2.0 and max_w < 3.0: | |
res_rgb /= max_rgb / 2.4 | |
else: | |
if max_rgb > 2.4 and max_w > 3.0: | |
res_rgb /= max_rgb / 2.4 | |
actual_res = torch.einsum("laxy,ab -> lbxy", res_rgb, coefs.inverse()) | |
return actual_res |