Spaces:
Configuration error
Configuration error
import math | |
import torch | |
import comfy | |
def extra_options_to_module_prefix(extra_options): | |
# extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64} | |
# block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0), | |
# ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)] | |
# transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block | |
# block_index is: 0-1 or 0-9, depends on the block | |
# input 7 and 8, middle has 10 blocks | |
# make module name from extra_options | |
block = extra_options["block"] | |
block_index = extra_options["block_index"] | |
if block[0] == "input": | |
module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}" | |
elif block[0] == "middle": | |
module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}" | |
elif block[0] == "output": | |
module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}" | |
else: | |
raise Exception("invalid block name") | |
return module_pfx | |
def load_control_net_lllite_patch(path, cond_image, multiplier, num_steps, start_percent, end_percent): | |
# calculate start and end step | |
start_step = math.floor(num_steps * start_percent * 0.01) if start_percent > 0 else 0 | |
end_step = math.floor(num_steps * end_percent * 0.01) if end_percent > 0 else num_steps | |
# load weights | |
ctrl_sd = comfy.utils.load_torch_file(path, safe_load=True) | |
# split each weights for each module | |
module_weights = {} | |
for key, value in ctrl_sd.items(): | |
fragments = key.split(".") | |
module_name = fragments[0] | |
weight_name = ".".join(fragments[1:]) | |
if module_name not in module_weights: | |
module_weights[module_name] = {} | |
module_weights[module_name][weight_name] = value | |
# load each module | |
modules = {} | |
for module_name, weights in module_weights.items(): | |
# ここの自動判定を何とかしたい | |
if "conditioning1.4.weight" in weights: | |
depth = 3 | |
elif weights["conditioning1.2.weight"].shape[-1] == 4: | |
depth = 2 | |
else: | |
depth = 1 | |
module = LLLiteModule( | |
name=module_name, | |
is_conv2d=weights["down.0.weight"].ndim == 4, | |
in_dim=weights["down.0.weight"].shape[1], | |
depth=depth, | |
cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2, | |
mlp_dim=weights["down.0.weight"].shape[0], | |
multiplier=multiplier, | |
num_steps=num_steps, | |
start_step=start_step, | |
end_step=end_step, | |
) | |
info = module.load_state_dict(weights) | |
modules[module_name] = module | |
if len(modules) == 1: | |
module.is_first = True | |
print(f"loaded {path} successfully, {len(modules)} modules") | |
# cond imageをセットする | |
cond_image = cond_image.permute(0, 3, 1, 2) # b,h,w,3 -> b,3,h,w | |
cond_image = cond_image * 2.0 - 1.0 # 0-1 -> -1-+1 | |
for module in modules.values(): | |
module.set_cond_image(cond_image) | |
class control_net_lllite_patch: | |
def __init__(self, modules): | |
self.modules = modules | |
def __call__(self, q, k, v, extra_options): | |
module_pfx = extra_options_to_module_prefix(extra_options) | |
is_attn1 = q.shape[-1] == k.shape[-1] # self attention | |
if is_attn1: | |
module_pfx = module_pfx + "_attn1" | |
else: | |
module_pfx = module_pfx + "_attn2" | |
module_pfx_to_q = module_pfx + "_to_q" | |
module_pfx_to_k = module_pfx + "_to_k" | |
module_pfx_to_v = module_pfx + "_to_v" | |
if module_pfx_to_q in self.modules: | |
q = q + self.modules[module_pfx_to_q](q) | |
if module_pfx_to_k in self.modules: | |
k = k + self.modules[module_pfx_to_k](k) | |
if module_pfx_to_v in self.modules: | |
v = v + self.modules[module_pfx_to_v](v) | |
return q, k, v | |
def to(self, device): | |
for d in self.modules.keys(): | |
self.modules[d] = self.modules[d].to(device) | |
return self | |
return control_net_lllite_patch(modules) | |
class LLLiteModule(torch.nn.Module): | |
def __init__( | |
self, | |
name: str, | |
is_conv2d: bool, | |
in_dim: int, | |
depth: int, | |
cond_emb_dim: int, | |
mlp_dim: int, | |
multiplier: int, | |
num_steps: int, | |
start_step: int, | |
end_step: int, | |
): | |
super().__init__() | |
self.name = name | |
self.is_conv2d = is_conv2d | |
self.multiplier = multiplier | |
self.num_steps = num_steps | |
self.start_step = start_step | |
self.end_step = end_step | |
self.is_first = False | |
modules = [] | |
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2 | |
if depth == 1: | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) | |
elif depth == 2: | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0)) | |
elif depth == 3: | |
# kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4 | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) | |
self.conditioning1 = torch.nn.Sequential(*modules) | |
if self.is_conv2d: | |
self.down = torch.nn.Sequential( | |
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0), | |
torch.nn.ReLU(inplace=True), | |
) | |
self.mid = torch.nn.Sequential( | |
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0), | |
torch.nn.ReLU(inplace=True), | |
) | |
self.up = torch.nn.Sequential( | |
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0), | |
) | |
else: | |
self.down = torch.nn.Sequential( | |
torch.nn.Linear(in_dim, mlp_dim), | |
torch.nn.ReLU(inplace=True), | |
) | |
self.mid = torch.nn.Sequential( | |
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim), | |
torch.nn.ReLU(inplace=True), | |
) | |
self.up = torch.nn.Sequential( | |
torch.nn.Linear(mlp_dim, in_dim), | |
) | |
self.depth = depth | |
self.cond_image = None | |
self.cond_emb = None | |
self.current_step = 0 | |
# @torch.inference_mode() | |
def set_cond_image(self, cond_image): | |
# print("set_cond_image", self.name) | |
self.cond_image = cond_image | |
self.cond_emb = None | |
self.current_step = 0 | |
def forward(self, x): | |
if self.num_steps > 0: | |
if self.current_step < self.start_step: | |
self.current_step += 1 | |
return torch.zeros_like(x) | |
elif self.current_step >= self.end_step: | |
if self.is_first and self.current_step == self.end_step: | |
print(f"end LLLite: step {self.current_step}") | |
self.current_step += 1 | |
if self.current_step >= self.num_steps: | |
self.current_step = 0 # reset | |
return torch.zeros_like(x) | |
else: | |
if self.is_first and self.current_step == self.start_step: | |
print(f"start LLLite: step {self.current_step}") | |
self.current_step += 1 | |
if self.current_step >= self.num_steps: | |
self.current_step = 0 # reset | |
if self.cond_emb is None: | |
# print(f"cond_emb is None, {self.name}") | |
cx = self.conditioning1(self.cond_image.to(x.device, dtype=x.dtype)) | |
if not self.is_conv2d: | |
# reshape / b,c,h,w -> b,h*w,c | |
n, c, h, w = cx.shape | |
cx = cx.view(n, c, h * w).permute(0, 2, 1) | |
self.cond_emb = cx | |
cx = self.cond_emb | |
# print(f"forward {self.name}, {cx.shape}, {x.shape}") | |
# uncond/condでxはバッチサイズが2倍 | |
if x.shape[0] != cx.shape[0]: | |
if self.is_conv2d: | |
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1) | |
else: | |
# print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0]) | |
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1) | |
cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2) | |
cx = self.mid(cx) | |
cx = self.up(cx) | |
return cx * self.multiplier |