JasonSmithSO's picture
Upload 578 files
8866644 verified
import comfy.supported_models_base
import comfy.latent_formats
import comfy.model_patcher
import comfy.model_base
import comfy.utils
import torch
from comfy import model_management
class EXM_DiT(comfy.supported_models_base.BASE):
unet_config = {}
unet_extra_config = {}
latent_format = comfy.latent_formats.SD15
def __init__(self, model_conf):
self.unet_config = model_conf.get("unet_config", {})
self.sampling_settings = model_conf.get("sampling_settings", {})
self.latent_format = self.latent_format()
# UNET is handled by extension
self.unet_config["disable_unet_model_creation"] = True
def model_type(self, state_dict, prefix=""):
return comfy.model_base.ModelType.EPS
def load_dit(model_path, model_conf):
state_dict = comfy.utils.load_torch_file(model_path)
state_dict = state_dict.get("model", state_dict)
parameters = comfy.utils.calculate_parameters(state_dict)
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
# ignore fp8/etc and use directly for now
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype:
print(f"DiT: falling back to {manual_cast_dtype}")
unet_dtype = manual_cast_dtype
model_conf["unet_config"]["num_classes"] = state_dict["y_embedder.embedding_table.weight"].shape[0] - 1 # adj. for empty
model_conf = EXM_DiT(model_conf)
model = comfy.model_base.BaseModel(
model_conf,
model_type=comfy.model_base.ModelType.EPS,
device=model_management.get_torch_device()
)
from .model import DiT
model.diffusion_model = DiT(**model_conf.unet_config)
model.diffusion_model.load_state_dict(state_dict)
model.diffusion_model.dtype = unet_dtype
model.diffusion_model.eval()
model.diffusion_model.to(unet_dtype)
model_patcher = comfy.model_patcher.ModelPatcher(
model,
load_device = load_device,
offload_device = offload_device,
current_device = "cpu",
)
return model_patcher