Spaces:
Configuration error
Configuration error
import numpy as np | |
import cv2 | |
import os | |
import cv2 | |
from .dw_onnx.cv_ox_det import inference_detector as inference_onnx_yolox | |
from .dw_onnx.cv_ox_yolo_nas import inference_detector as inference_onnx_yolo_nas | |
from .dw_onnx.cv_ox_pose import inference_pose as inference_onnx_pose | |
from .dw_torchscript.jit_det import inference_detector as inference_jit_yolox | |
from .dw_torchscript.jit_pose import inference_pose as inference_jit_pose | |
from typing import List, Optional | |
from .types import PoseResult, BodyResult, Keypoint | |
from custom_controlnet_aux.dwpose.util import guess_onnx_input_shape_dtype, get_ort_providers, get_model_type, is_model_torchscript | |
from timeit import default_timer | |
import torch | |
def drawBetweenKeypoints(pose_img, keypoints, indexes, color, scaleFactor): | |
ind0 = indexes[0] - 1 | |
ind1 = indexes[1] - 1 | |
point1 = (keypoints[ind0][0], keypoints[ind0][1]) | |
point2 = (keypoints[ind1][0], keypoints[ind1][1]) | |
thickness = int(5 // scaleFactor) | |
cv2.line(pose_img, (int(point1[0]), int(point1[1])), (int(point2[0]), int(point2[1])), color, thickness) | |
def drawBetweenKeypointsList(pose_img, keypoints, keypointPairsList, colorsList, scaleFactor): | |
for ind, keypointPair in enumerate(keypointPairsList): | |
drawBetweenKeypoints(pose_img, keypoints, keypointPair, colorsList[ind], scaleFactor) | |
def drawBetweenSetofKeypointLists(pose_img, keypoints_set, keypointPairsList, colorsList, scaleFactor): | |
for keypoints in keypoints_set: | |
drawBetweenKeypointsList(pose_img, keypoints, keypointPairsList, colorsList, scaleFactor) | |
def padImg(img, size, blackBorder=True): | |
left, right, top, bottom = 0, 0, 0, 0 | |
# pad x | |
if img.shape[1] < size[1]: | |
sidePadding = int((size[1] - img.shape[1]) // 2) | |
left = sidePadding | |
right = sidePadding | |
# pad extra on right if padding needed is an odd number | |
if img.shape[1] % 2 == 1: | |
right += 1 | |
# pad y | |
if img.shape[0] < size[0]: | |
topBottomPadding = int((size[0] - img.shape[0]) // 2) | |
top = topBottomPadding | |
bottom = topBottomPadding | |
# pad extra on bottom if padding needed is an odd number | |
if img.shape[0] % 2 == 1: | |
bottom += 1 | |
if blackBorder: | |
paddedImg = cv2.copyMakeBorder(src=img, top=top, bottom=bottom, left=left, right=right, borderType=cv2.BORDER_CONSTANT, value=(0,0,0)) | |
else: | |
paddedImg = cv2.copyMakeBorder(src=img, top=top, bottom=bottom, left=left, right=right, borderType=cv2.BORDER_REPLICATE) | |
return paddedImg | |
def smartCrop(img, size, center): | |
width = img.shape[1] | |
height = img.shape[0] | |
xSize = size[1] | |
ySize = size[0] | |
xCenter = center[0] | |
yCenter = center[1] | |
if img.shape[0] > size[0] or img.shape[1] > size[1]: | |
leftMargin = xCenter - xSize//2 | |
rightMargin = xCenter + xSize//2 | |
upMargin = yCenter - ySize//2 | |
downMargin = yCenter + ySize//2 | |
if(leftMargin < 0): | |
xCenter += (-leftMargin) | |
if(rightMargin > width): | |
xCenter -= (rightMargin - width) | |
if(upMargin < 0): | |
yCenter -= -upMargin | |
if(downMargin > height): | |
yCenter -= (downMargin - height) | |
img = cv2.getRectSubPix(img, size, (xCenter, yCenter)) | |
return img | |
def calculateScaleFactor(img, size, poseSpanX, poseSpanY): | |
poseSpanX = max(poseSpanX, size[0]) | |
scaleFactorX = 1 | |
if poseSpanX > size[0]: | |
scaleFactorX = size[0] / poseSpanX | |
scaleFactorY = 1 | |
if poseSpanY > size[1]: | |
scaleFactorY = size[1] / poseSpanY | |
scaleFactor = min(scaleFactorX, scaleFactorY) | |
return scaleFactor | |
def scaleImg(img, size, poseSpanX, poseSpanY, scaleFactor): | |
scaledImg = img | |
scaledImg = cv2.resize(img, (0, 0), fx=scaleFactor, fy=scaleFactor) | |
return scaledImg, scaleFactor | |
class AnimalPoseImage: | |
def __init__(self, det_model_path: Optional[str] = None, pose_model_path: Optional[str] = None, torchscript_device="cuda"): | |
self.det_filename = det_model_path and os.path.basename(det_model_path) | |
self.pose_filename = pose_model_path and os.path.basename(pose_model_path) | |
self.det, self.pose = None, None | |
# return type: None ort cv2 torchscript | |
self.det_model_type = get_model_type("AnimalPose",self.det_filename) | |
self.pose_model_type = get_model_type("AnimalPose",self.pose_filename) | |
# Always loads to CPU to avoid building OpenCV. | |
cv2_device = 'cpu' | |
cv2_backend = cv2.dnn.DNN_BACKEND_OPENCV if cv2_device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA | |
# You need to manually build OpenCV through cmake to work with your GPU. | |
cv2_providers = cv2.dnn.DNN_TARGET_CPU if cv2_device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA | |
ort_providers = get_ort_providers() | |
if self.det_model_type is None: | |
pass | |
elif self.det_model_type == "ort": | |
try: | |
import onnxruntime as ort | |
self.det = ort.InferenceSession(det_model_path, providers=ort_providers) | |
except: | |
print(f"Failed to load onnxruntime with {self.det.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") | |
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) | |
elif self.det_model_type == "cv2": | |
try: | |
self.det = cv2.dnn.readNetFromONNX(det_model_path) | |
self.det.setPreferableBackend(cv2_backend) | |
self.det.setPreferableTarget(cv2_providers) | |
except: | |
print("TopK operators may not work on your OpenCV, try use onnxruntime with CPUExecutionProvider") | |
try: | |
import onnxruntime as ort | |
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) | |
except: | |
print(f"Failed to load {det_model_path}, you can use other models instead") | |
else: | |
self.det = torch.jit.load(det_model_path) | |
self.det.to(torchscript_device) | |
if self.pose_model_type is None: | |
pass | |
elif self.pose_model_type == "ort": | |
try: | |
import onnxruntime as ort | |
self.pose = ort.InferenceSession(pose_model_path, providers=ort_providers) | |
except: | |
print(f"Failed to load onnxruntime with {self.pose.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") | |
self.pose = ort.InferenceSession(pose_model_path, providers=["CPUExecutionProvider"]) | |
elif self.pose_model_type == "cv2": | |
self.pose = cv2.dnn.readNetFromONNX(pose_model_path) | |
self.pose.setPreferableBackend(cv2_backend) | |
self.pose.setPreferableTarget(cv2_providers) | |
else: | |
self.pose = torch.jit.load(pose_model_path) | |
self.pose.to(torchscript_device) | |
if self.pose_filename is not None: | |
self.pose_input_size, _ = guess_onnx_input_shape_dtype(self.pose_filename) | |
def __call__(self, oriImg): | |
detect_classes = list(range(14, 23 + 1)) #https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml | |
#Sacrifice accurate time measurement for compatibility | |
det_start = default_timer() | |
if is_model_torchscript(self.det): | |
det_result = inference_jit_yolox(self.det, oriImg, detect_classes=detect_classes) | |
else: | |
det_start = default_timer() | |
det_onnx_dtype = np.float32 if "yolox" in self.det_filename else np.uint8 | |
if "yolox" in self.det_filename: | |
det_result = inference_onnx_yolox(self.det, oriImg, detect_classes=detect_classes, dtype=det_onnx_dtype) | |
else: | |
#FP16 and INT8 YOLO NAS accept uint8 input | |
det_result = inference_onnx_yolo_nas(self.det, oriImg, detect_classes=detect_classes, dtype=det_onnx_dtype) | |
print(f"AnimalPose: Bbox {((default_timer() - det_start) * 1000):.2f}ms") | |
if (det_result is None) or (det_result.shape[0] == 0): | |
openpose_dict = { | |
'version': 'ap10k', | |
'animals': [], | |
'canvas_height': oriImg.shape[0], | |
'canvas_width': oriImg.shape[1] | |
} | |
return np.zeros_like(oriImg), openpose_dict | |
pose_start = default_timer() | |
if is_model_torchscript(self.pose): | |
keypoint_sets, scores = inference_jit_pose(self.pose, det_result, oriImg, self.pose_input_size) | |
else: | |
pose_start = default_timer() | |
_, pose_onnx_dtype = guess_onnx_input_shape_dtype(self.pose_filename) | |
keypoint_sets, scores = inference_onnx_pose(self.pose, det_result, oriImg, self.pose_input_size, dtype=pose_onnx_dtype) | |
print(f"AnimalPose: Pose {((default_timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} animals\n") | |
animal_kps_scores = [] | |
pose_img = np.zeros((oriImg.shape[0], oriImg.shape[1], 3), dtype = np.uint8) | |
for (idx, keypoints) in enumerate(keypoint_sets): | |
# don't use keypoints that go outside the frame in calculations for the center | |
interorKeypoints = keypoints[((keypoints[:,0] > 0) & (keypoints[:,0] < oriImg.shape[1])) & ((keypoints[:,1] > 0) & (keypoints[:,1] < oriImg.shape[0]))] | |
xVals = interorKeypoints[:,0] | |
yVals = interorKeypoints[:,1] | |
minX = np.amin(xVals) | |
minY = np.amin(yVals) | |
maxX = np.amax(xVals) | |
maxY = np.amax(yVals) | |
poseSpanX = maxX - minX | |
poseSpanY = maxY - minY | |
# find mean center | |
xSum = np.sum(xVals) | |
ySum = np.sum(yVals) | |
xCenter = xSum // xVals.shape[0] | |
yCenter = ySum // yVals.shape[0] | |
center_of_keypoints = (xCenter,yCenter) | |
# order of the keypoints for AP10k and a standardized list of colors for limbs | |
keypointPairsList = [(1,2), (2,3), (1,3), (3,4), (4,9), (9,10), (10,11), (4,6), (6,7), (7,8), (4,5), (5,15), (15,16), (16,17), (5,12), (12,13), (13,14)] | |
colorsList = [(255,255,255), (100,255,100), (150,255,255), (100,50,255), (50,150,200), (0,255,255), (0,150,0), (0,0,255), (0,0,150), (255,50,255), (255,0,255), (255,0,0), (150,0,0), (255,255,100), (0,150,0), (255,255,0), (150,150,150)] # 16 colors needed | |
drawBetweenKeypointsList(pose_img, keypoints, keypointPairsList, colorsList, scaleFactor=1.0) | |
score = scores[idx, ..., None] | |
score[score > 1.0] = 1.0 | |
score[score < 0.0] = 0.0 | |
animal_kps_scores.append(np.concatenate((keypoints, score), axis=-1)) | |
openpose_dict = { | |
'version': 'ap10k', | |
'animals': [keypoints.tolist() for keypoints in animal_kps_scores], | |
'canvas_height': oriImg.shape[0], | |
'canvas_width': oriImg.shape[1] | |
} | |
return pose_img, openpose_dict |