Spaces:
Configuration error
Configuration error
# Copyright (c) OpenMMLab. All rights reserved. | |
import cv2 | |
import numpy as np | |
from .dw_onnx.cv_ox_det import inference_detector as inference_onnx_yolox | |
from .dw_onnx.cv_ox_yolo_nas import inference_detector as inference_onnx_yolo_nas | |
from .dw_onnx.cv_ox_pose import inference_pose as inference_onnx_pose | |
from .dw_torchscript.jit_det import inference_detector as inference_jit_yolox | |
from .dw_torchscript.jit_pose import inference_pose as inference_jit_pose | |
from typing import List, Optional | |
from .types import PoseResult, BodyResult, Keypoint | |
from timeit import default_timer | |
import os | |
from custom_controlnet_aux.dwpose.util import guess_onnx_input_shape_dtype, get_model_type, get_ort_providers, is_model_torchscript | |
import torch | |
class Wholebody: | |
def __init__(self, det_model_path: Optional[str] = None, pose_model_path: Optional[str] = None, torchscript_device="cuda"): | |
self.det_filename = det_model_path and os.path.basename(det_model_path) | |
self.pose_filename = pose_model_path and os.path.basename(pose_model_path) | |
self.det, self.pose = None, None | |
# return type: None ort cv2 torchscript | |
self.det_model_type = get_model_type("DWPose",self.det_filename) | |
self.pose_model_type = get_model_type("DWPose",self.pose_filename) | |
# Always loads to CPU to avoid building OpenCV. | |
cv2_device = 'cpu' | |
cv2_backend = cv2.dnn.DNN_BACKEND_OPENCV if cv2_device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA | |
# You need to manually build OpenCV through cmake to work with your GPU. | |
cv2_providers = cv2.dnn.DNN_TARGET_CPU if cv2_device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA | |
ort_providers = get_ort_providers() | |
if self.det_model_type is None: | |
pass | |
elif self.det_model_type == "ort": | |
try: | |
import onnxruntime as ort | |
self.det = ort.InferenceSession(det_model_path, providers=ort_providers) | |
except: | |
print(f"Failed to load onnxruntime with {self.det.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") | |
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) | |
elif self.det_model_type == "cv2": | |
try: | |
self.det = cv2.dnn.readNetFromONNX(det_model_path) | |
self.det.setPreferableBackend(cv2_backend) | |
self.det.setPreferableTarget(cv2_providers) | |
except: | |
print("TopK operators may not work on your OpenCV, try use onnxruntime with CPUExecutionProvider") | |
try: | |
import onnxruntime as ort | |
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) | |
except: | |
print(f"Failed to load {det_model_path}, you can use other models instead") | |
else: | |
self.det = torch.jit.load(det_model_path) | |
self.det.to(torchscript_device) | |
if self.pose_model_type is None: | |
pass | |
elif self.pose_model_type == "ort": | |
try: | |
import onnxruntime as ort | |
self.pose = ort.InferenceSession(pose_model_path, providers=ort_providers) | |
except: | |
print(f"Failed to load onnxruntime with {self.pose.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") | |
self.pose = ort.InferenceSession(pose_model_path, providers=["CPUExecutionProvider"]) | |
elif self.pose_model_type == "cv2": | |
self.pose = cv2.dnn.readNetFromONNX(pose_model_path) | |
self.pose.setPreferableBackend(cv2_backend) | |
self.pose.setPreferableTarget(cv2_providers) | |
else: | |
self.pose = torch.jit.load(pose_model_path) | |
self.pose.to(torchscript_device) | |
if self.pose_filename is not None: | |
self.pose_input_size, _ = guess_onnx_input_shape_dtype(self.pose_filename) | |
def __call__(self, oriImg) -> Optional[np.ndarray]: | |
#Sacrifice accurate time measurement for compatibility | |
det_start = default_timer() | |
if is_model_torchscript(self.det): | |
det_result = inference_jit_yolox(self.det, oriImg, detect_classes=[0]) | |
else: | |
if "yolox" in self.det_filename: | |
det_result = inference_onnx_yolox(self.det, oriImg, detect_classes=[0], dtype=np.float32) | |
else: | |
#FP16 and INT8 YOLO NAS accept uint8 input | |
det_result = inference_onnx_yolo_nas(self.det, oriImg, detect_classes=[0], dtype=np.uint8) | |
print(f"DWPose: Bbox {((default_timer() - det_start) * 1000):.2f}ms") | |
if (det_result is None) or (det_result.shape[0] == 0): | |
return None | |
pose_start = default_timer() | |
if is_model_torchscript(self.pose): | |
keypoints, scores = inference_jit_pose(self.pose, det_result, oriImg, self.pose_input_size) | |
else: | |
_, pose_onnx_dtype = guess_onnx_input_shape_dtype(self.pose_filename) | |
keypoints, scores = inference_onnx_pose(self.pose, det_result, oriImg, self.pose_input_size, dtype=pose_onnx_dtype) | |
print(f"DWPose: Pose {((default_timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n") | |
keypoints_info = np.concatenate( | |
(keypoints, scores[..., None]), axis=-1) | |
# compute neck joint | |
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) | |
# neck score when visualizing pred | |
neck[:, 2:4] = np.logical_and( | |
keypoints_info[:, 5, 2:4] > 0.3, | |
keypoints_info[:, 6, 2:4] > 0.3).astype(int) | |
new_keypoints_info = np.insert( | |
keypoints_info, 17, neck, axis=1) | |
mmpose_idx = [ | |
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 | |
] | |
openpose_idx = [ | |
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 | |
] | |
new_keypoints_info[:, openpose_idx] = \ | |
new_keypoints_info[:, mmpose_idx] | |
keypoints_info = new_keypoints_info | |
return keypoints_info | |
def format_result(keypoints_info: Optional[np.ndarray]) -> List[PoseResult]: | |
def format_keypoint_part( | |
part: np.ndarray, | |
) -> Optional[List[Optional[Keypoint]]]: | |
keypoints = [ | |
Keypoint(x, y, score, i) if score >= 0.3 else None | |
for i, (x, y, score) in enumerate(part) | |
] | |
return ( | |
None if all(keypoint is None for keypoint in keypoints) else keypoints | |
) | |
def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float: | |
return ( | |
sum(keypoint.score for keypoint in keypoints if keypoint is not None) | |
if keypoints is not None | |
else 0.0 | |
) | |
pose_results = [] | |
if keypoints_info is None: | |
return pose_results | |
for instance in keypoints_info: | |
body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18) | |
left_hand = format_keypoint_part(instance[92:113]) | |
right_hand = format_keypoint_part(instance[113:134]) | |
face = format_keypoint_part(instance[24:92]) | |
# Openpose face consists of 70 points in total, while DWPose only | |
# provides 68 points. Padding the last 2 points. | |
if face is not None: | |
# left eye | |
face.append(body_keypoints[14]) | |
# right eye | |
face.append(body_keypoints[15]) | |
body = BodyResult( | |
body_keypoints, total_score(body_keypoints), len(body_keypoints) | |
) | |
pose_results.append(PoseResult(body, left_hand, right_hand, face)) | |
return pose_results |