JasonSmithSO's picture
Upload 777 files
0034848 verified
import cv2
import numpy as np
from PIL import Image
from custom_controlnet_aux.util import resize_image_with_pad, common_input_validate, HWC3, custom_hf_download, MESH_GRAPHORMER_MODEL_NAME
from custom_controlnet_aux.mesh_graphormer.pipeline import MeshGraphormerMediapipe, args
import random, torch
def set_seed(seed, n_gpu):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed)
class MeshGraphormerDetector:
def __init__(self, pipeline):
self.pipeline = pipeline
@classmethod
def from_pretrained(cls, pretrained_model_or_path=MESH_GRAPHORMER_MODEL_NAME, filename="graphormer_hand_state_dict.bin", hrnet_filename="hrnetv2_w64_imagenet_pretrained.pth", detect_thr=0.6, presence_thr=0.6):
args.resume_checkpoint = custom_hf_download(pretrained_model_or_path, filename)
args.hrnet_checkpoint = custom_hf_download(pretrained_model_or_path, hrnet_filename)
pipeline = MeshGraphormerMediapipe(args, detect_thr=detect_thr, presence_thr=presence_thr)
return cls(pipeline)
def to(self, device):
self.pipeline._model.to(device)
self.pipeline.mano_model.to(device)
self.pipeline.mano_model.layer.to(device)
return self
def __call__(self, input_image=None, mask_bbox_padding=30, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", seed=88, **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
set_seed(seed, 0)
depth_map, mask, info = self.pipeline.get_depth(input_image, mask_bbox_padding)
if depth_map is None:
depth_map = np.zeros_like(input_image)
mask = np.zeros_like(input_image)
#The hand is small
depth_map, mask = HWC3(depth_map), HWC3(mask)
depth_map, remove_pad = resize_image_with_pad(depth_map, detect_resolution, upscale_method)
depth_map = remove_pad(depth_map)
if output_type == "pil":
depth_map = Image.fromarray(depth_map)
mask = Image.fromarray(mask)
return depth_map, mask, info