Spaces:
Configuration error
Configuration error
import cv2 | |
import numpy as np | |
from PIL import Image | |
from custom_controlnet_aux.util import resize_image_with_pad, common_input_validate, HWC3, custom_hf_download, MESH_GRAPHORMER_MODEL_NAME | |
from custom_controlnet_aux.mesh_graphormer.pipeline import MeshGraphormerMediapipe, args | |
import random, torch | |
def set_seed(seed, n_gpu): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if n_gpu > 0: | |
torch.cuda.manual_seed_all(seed) | |
class MeshGraphormerDetector: | |
def __init__(self, pipeline): | |
self.pipeline = pipeline | |
def from_pretrained(cls, pretrained_model_or_path=MESH_GRAPHORMER_MODEL_NAME, filename="graphormer_hand_state_dict.bin", hrnet_filename="hrnetv2_w64_imagenet_pretrained.pth", detect_thr=0.6, presence_thr=0.6): | |
args.resume_checkpoint = custom_hf_download(pretrained_model_or_path, filename) | |
args.hrnet_checkpoint = custom_hf_download(pretrained_model_or_path, hrnet_filename) | |
pipeline = MeshGraphormerMediapipe(args, detect_thr=detect_thr, presence_thr=presence_thr) | |
return cls(pipeline) | |
def to(self, device): | |
self.pipeline._model.to(device) | |
self.pipeline.mano_model.to(device) | |
self.pipeline.mano_model.layer.to(device) | |
return self | |
def __call__(self, input_image=None, mask_bbox_padding=30, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", seed=88, **kwargs): | |
input_image, output_type = common_input_validate(input_image, output_type, **kwargs) | |
set_seed(seed, 0) | |
depth_map, mask, info = self.pipeline.get_depth(input_image, mask_bbox_padding) | |
if depth_map is None: | |
depth_map = np.zeros_like(input_image) | |
mask = np.zeros_like(input_image) | |
#The hand is small | |
depth_map, mask = HWC3(depth_map), HWC3(mask) | |
depth_map, remove_pad = resize_image_with_pad(depth_map, detect_resolution, upscale_method) | |
depth_map = remove_pad(depth_map) | |
if output_type == "pil": | |
depth_map = Image.fromarray(depth_map) | |
mask = Image.fromarray(mask) | |
return depth_map, mask, info | |